14 research outputs found

    Concatenated spatially-localized random forests for hippocampus labeling in adult and infant MR brain images

    Get PDF
    Automatic labeling of the hippocampus in brain MR images is highly demanded, as it has played an important role in imaging-based brain studies. However, accurate labeling of the hippocampus is still challenging, partially due to the ambiguous intensity boundary between the hippocampus and surrounding anatomies. In this paper, we propose a concatenated set of spatially-localized random forests for multi-atlas-based hippocampus labeling of adult/infant brain MR images. The contribution in our work is two-fold. First, each forest classifier is trained to label just a specific sub-region of the hippocampus, thus enhancing the labeling accuracy. Second, a novel forest selection strategy is proposed, such that each voxel in the test image can automatically select a set of optimal forests, and then dynamically fuses their respective outputs for determining the final label. Furthermore, we enhance the spatially-localized random forests with the aid of the auto-context strategy. In this way, our proposed learning framework can gradually refine the tentative labeling result for better performance. Experiments show that, regarding the large datasets of both adult and infant brain MR images, our method owns satisfactory scalability by segmenting the hippocampus accurately and efficiently

    Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation

    Get PDF
    A novel label fusion method for multi-atlas based image segmentation method is developed by integrating semi-supervised and supervised machine learning techniques. Particularly, our method is developed in a pattern recognition based multi-atlas label fusion framework. We build random forests classification models for each image voxel to be segmented based on its corresponding image patches of atlas images that have been registered to the image to be segmented. The voxelwise random forests classification models are then applied to the image to be segmented to obtain a probabilistic segmentation map. Finally, a semi-supervised label propagation method is adapted to refine the probabilistic segmentation map by propagating its reliable voxelwise segmentation labels, taking into consideration consistency of local and global image appearance of the image to be segmented. The proposed method has been evaluated for segmenting the hippocampus in MR images and compared with alternative machine learning based multi-atlas based image segmentation methods. The experiment results have demonstrated that our method could obtain competitive segmentation performance (average Dice index > 0.88), compared with alternative multi-atlas based image segmentation methods under comparison. Source codes of the methods under comparison are publicly available at www.nitrc.org/frs/?group_id=1242

    Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution

    Get PDF
    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images

    Minimally Interactive Segmentation with Application to Human Placenta in Fetal MR Images

    Get PDF
    Placenta segmentation from fetal Magnetic Resonance (MR) images is important for fetal surgical planning. However, accurate segmentation results are difficult to achieve for automatic methods, due to sparse acquisition, inter-slice motion, and the widely varying position and shape of the placenta among pregnant women. Interactive methods have been widely used to get more accurate and robust results. A good interactive segmentation method should achieve high accuracy, minimize user interactions with low variability among users, and be computationally fast. Exploiting recent advances in machine learning, I explore a family of new interactive methods for placenta segmentation from fetal MR images. I investigate the combination of user interactions with learning from a single image or a large set of images. For learning from a single image, I propose novel Online Random Forests to efficiently leverage user interactions for the segmentation of 2D and 3D fetal MR images. I also investigate co-segmentation of multiple volumes of the same patient with 4D Graph Cuts. For learning from a large set of images, I first propose a deep learning-based framework that combines user interactions with Convolutional Neural Networks (CNN) based on geodesic distance transforms to achieve accurate segmentation and good interactivity. I then propose image-specific fine-tuning to make CNNs adaptive to different individual images and able to segment previously unseen objects. Experimental results show that the proposed algorithms outperform traditional interactive segmentation methods in terms of accuracy and interactivity. Therefore, they might be suitable for segmentation of the placenta in planning systems for fetal and maternal surgery, and for rapid characterization of the placenta by MR images. I also demonstrate that they can be applied to the segmentation of other organs from 2D and 3D images

    Applications of Artificial Intelligence in Medicine Practice

    Get PDF
    This book focuses on a variety of interdisciplinary perspectives concerning the theory and application of artificial intelligence (AI) in medicine, medically oriented human biology, and healthcare. The list of topics includes the application of AI in biomedicine and clinical medicine, machine learning-based decision support, robotic surgery, data analytics and mining, laboratory information systems, and usage of AI in medical education. Special attention is given to the practical aspect of a study. Hence, the inclusion of a clinical assessment of the usefulness and potential impact of the submitted work is strongly highlighted

    The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE)

    Get PDF
    corecore