30,489 research outputs found

    Graph Concatenation for Quantum Codes

    Get PDF
    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code, and every codeword stabilized code can be described by a graph and a classical code. For the construction of good quantum codes of relatively large block length, concatenated quantum codes and their generalizations play an important role. We develop a systematic method for constructing concatenated quantum codes based on "graph concatenation", where graphs representing the inner and outer codes are concatenated via a simple graph operation called "generalized local complementation." Our method applies to both binary and non-binary concatenated quantum codes as well as their generalizations.Comment: 26 pages, 12 figures. Figures of concatenated [[5,1,3]] and [[7,1,3]] are added. Submitted to JM

    Concatenated Quantum Codes

    Get PDF
    One of the main problems for the future of practical quantum computing is to stabilize the computation against unwanted interactions with the environment and imperfections in the applied operations. Existing proposals for quantum memories and quantum channels require gates with asymptotically zero error to store or transmit an input quantum state for arbitrarily long times or distances with fixed error. In this report a method is given which has the property that to store or transmit a qubit with maximum error ϵ\epsilon requires gates with error at most cϵc\epsilon and storage or channel elements with error at most ϵ\epsilon, independent of how long we wish to store the state or how far we wish to transmit it. The method relies on using concatenated quantum codes with hierarchically implemented recovery operations. The overhead of the method is polynomial in the time of storage or the distance of the transmission. Rigorous and heuristic lower bounds for the constant cc are given.Comment: 16 pages in PostScirpt, the paper is also avalaible at http://qso.lanl.gov/qc

    Concatenated Polar Codes

    Get PDF
    Polar codes have attracted much recent attention as the first codes with low computational complexity that provably achieve optimal rate-regions for a large class of information-theoretic problems. One significant drawback, however, is that for current constructions the probability of error decays sub-exponentially in the block-length (more detailed designs improve the probability of error at the cost of significantly increased computational complexity \cite{KorUS09}). In this work we show how the the classical idea of code concatenation -- using "short" polar codes as inner codes and a "high-rate" Reed-Solomon code as the outer code -- results in substantially improved performance. In particular, code concatenation with a careful choice of parameters boosts the rate of decay of the probability of error to almost exponential in the block-length with essentially no loss in computational complexity. We demonstrate such performance improvements for three sets of information-theoretic problems -- a classical point-to-point channel coding problem, a class of multiple-input multiple output channel coding problems, and some network source coding problems

    A Unified Ensemble of Concatenated Convolutional Codes

    Get PDF
    We introduce a unified ensemble for turbo-like codes (TCs) that contains the four main classes of TCs: parallel concatenated codes, serially concatenated codes, hybrid concatenated codes, and braided convolutional codes. We show that for each of the original classes of TCs, it is possible to find an equivalent ensemble by proper selection of the design parameters in the unified ensemble. We also derive the density evolution (DE) equations for this ensemble over the binary erasure channel. The thresholds obtained from the DE indicate that the TC ensembles from the unified ensemble have similar asymptotic behavior to the original TC ensembles

    Braided Convolutional Codes -- A Class of Spatially Coupled Turbo-Like Codes

    Get PDF
    In this paper, we investigate the impact of spatial coupling on the thresholds of turbo-like codes. Parallel concatenated and serially concatenated convolutional codes as well as braided convolutional codes (BCCs) are compared by means of an exact density evolution (DE) analysis for the binary erasure channel (BEC). We propose two extensions of the original BCC ensemble to improve its threshold and demonstrate that their BP thresholds approach the maximum-a-posteriori (MAP) threshold of the uncoupled ensemble. A comparison of the different ensembles shows that parallel concatenated ensembles can be outperformed by both serially concatenated and BCC ensembles, although they have the best BP thresholds in the uncoupled case.Comment: Invited paper, International Conference on Signal Processing and Communications, SPCOM 2014, Bangalore, India, July 22-25, 201

    Gossip Codes for Fingerprinting: Construction, Erasure Analysis and Pirate Tracing

    Full text link
    This work presents two new construction techniques for q-ary Gossip codes from tdesigns and Traceability schemes. These Gossip codes achieve the shortest code length specified in terms of code parameters and can withstand erasures in digital fingerprinting applications. This work presents the construction of embedded Gossip codes for extending an existing Gossip code into a bigger code. It discusses the construction of concatenated codes and realisation of erasure model through concatenated codes.Comment: 28 page
    corecore