10,603 research outputs found

    Computing hypergeometric functions rigorously

    Get PDF
    We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions 0F1{}_0F_1, 1F1{}_1F_1, 2F1{}_2F_1 and 2F0{}_2F_0 (or the Kummer UU-function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software, and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function pFq{}_pF_q and computation of high-order parameter derivatives.Comment: v2: corrected example in section 3.1; corrected timing data for case E-G in section 8.5 (table 6, figure 2); adjusted paper siz

    Propagation of boundary CR foliations and Morera type theorems for manifolds with attached analytic discs

    Get PDF
    We prove that generic homologically nontrivial (2n−1)(2n-1)-parameter family of analytic discs attached by their boundaries to a CR manifold Ω\Omega in Cn,n≤2\mathbb C^n, n \le 2 tests CR functions: if a smooth function on Ω\Omega extends analytically inside each analytic disc then it satisfies the tangential CR equations. In particular, we answer, in real analytic category, two open questions: on characterization of analytic functions in planar domains (the strip-problem), and on characterization of boundary values of holomorphic functions in domains in Cn\mathbb C^n (a conjecture of Globevnik and Stout). We also characterize complex curves in C2\mathbb C^2 as real 2-manifolds admitiing homologically nontrivial 1-parameter families of attached analytic discs. The proofs are based on reduction to a problem of propagation of degeneracy of CR foliations of torus-like manifolds.Comment: The version accepted in Advances in Mathematic

    A rational spectral collocation method with adaptively transformed Chebyshev grid points

    Get PDF
    A spectral collocation method based on rational interpolants and adaptive grid points is presented. The rational interpolants approximate analytic functions with exponential accuracy by using prescribed barycentric weights and transformed Chebyshev points. The locations of the grid points are adapted to singularities of the underlying solution, and the locations of these singularities are approximated by the locations of poles of Chebyshev-Padé approximants. Numerical experiments on two time-dependent problems, one with finite time blow-up and one with a moving front, indicate that the method far outperforms the standard Chebyshev spectral collocation method for problems whose solutions have singularities in the complex plan close to [-1,1]

    Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals

    Full text link
    High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat

    The exponentially convergent trapezoidal rule

    Get PDF
    It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators

    Time-frequency transforms of white noises and Gaussian analytic functions

    Get PDF
    A family of Gaussian analytic functions (GAFs) has recently been linked to the Gabor transform of white Gaussian noise [Bardenet et al., 2017]. This answered pioneering work by Flandrin [2015], who observed that the zeros of the Gabor transform of white noise had a very regular distribution and proposed filtering algorithms based on the zeros of a spectrogram. The mathematical link with GAFs provides a wealth of probabilistic results to inform the design of such signal processing procedures. In this paper, we study in a systematic way the link between GAFs and a class of time-frequency transforms of Gaussian white noises on Hilbert spaces of signals. Our main observation is a conceptual correspondence between pairs (transform, GAF) and generating functions for classical orthogonal polynomials. This correspondence covers some classical time-frequency transforms, such as the Gabor transform and the Daubechies-Paul analytic wavelet transform. It also unveils new windowed discrete Fourier transforms, which map white noises to fundamental GAFs. All these transforms may thus be of interest to the research program `filtering with zeros'. We also identify the GAF whose zeros are the extrema of the Gabor transform of the white noise and derive their first intensity. Moreover, we discuss important subtleties in defining a white noise and its transform on infinite dimensional Hilbert spaces. Finally, we provide quantitative estimates concerning the finite-dimensional approximations of these white noises, which is of practical interest when it comes to implementing signal processing algorithms based on GAFs.Comment: to appear in Applied and Computational Harmonic Analysi

    Spectral Methods for Coupled Channels with a Mass Gap

    Get PDF
    We develop a method to compute the vacuum polarization energy for coupled scalar fields with different masses scattering off a background potential in one space dimension. As an example we consider the vacuum polarization energy of a kink-like soliton built from two real scalar fields with different mass parameters.Comment: 14 pages, 5 figures, matches journal version, references added (surprisingly many

    Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map

    Full text link
    We present an efficient procedure for computing resonances and resonant modes of Helmholtz problems posed in exterior domains. The problem is formulated as a nonlinear eigenvalue problem (NEP), where the nonlinearity arises from the use of a Dirichlet-to-Neumann map, which accounts for modeling unbounded domains. We consider a variational formulation and show that the spectrum consists of isolated eigenvalues of finite multiplicity that only can accumulate at infinity. The proposed method is based on a high order finite element discretization combined with a specialization of the Tensor Infinite Arnoldi method. Using Toeplitz matrices, we show how to specialize this method to our specific structure. In particular we introduce a pole cancellation technique in order to increase the radius of convergence for computation of eigenvalues that lie close to the poles of the matrix-valued function. The solution scheme can be applied to multiple resonators with a varying refractive index that is not necessarily piecewise constant. We present two test cases to show stability, performance and numerical accuracy of the method. In particular the use of a high order finite element discretization together with TIAR results in an efficient and reliable method to compute resonances
    • …
    corecore