39,821 research outputs found

    Dimension Extractors and Optimal Decompression

    Full text link
    A *dimension extractor* is an algorithm designed to increase the effective dimension -- i.e., the amount of computational randomness -- of an infinite binary sequence, in order to turn a "partially random" sequence into a "more random" sequence. Extractors are exhibited for various effective dimensions, including constructive, computable, space-bounded, time-bounded, and finite-state dimension. Using similar techniques, the Kucera-Gacs theorem is examined from the perspective of decompression, by showing that every infinite sequence S is Turing reducible to a Martin-Loef random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S, which is shown to be the optimal ratio of query bits to computed bits achievable with Turing reductions. The extractors and decompressors that are developed lead directly to new characterizations of some effective dimensions in terms of optimal decompression by Turing reductions.Comment: This report was combined with a different conference paper "Every Sequence is Decompressible from a Random One" (cs.IT/0511074, at http://dx.doi.org/10.1007/11780342_17), and both titles were changed, with the conference paper incorporated as section 5 of this new combined paper. The combined paper was accepted to the journal Theory of Computing Systems, as part of a special issue of invited papers from the second conference on Computability in Europe, 200

    Productive Corecursion in Logic Programming

    Get PDF
    Logic Programming is a Turing complete language. As a consequence, designing algorithms that decide termination and non-termination of programs or decide inductive/coinductive soundness of formulae is a challenging task. For example, the existing state-of-the-art algorithms can only semi-decide coinductive soundness of queries in logic programming for regular formulae. Another, less famous, but equally fundamental and important undecidable property is productivity. If a derivation is infinite and coinductively sound, we may ask whether the computed answer it determines actually computes an infinite formula. If it does, the infinite computation is productive. This intuition was first expressed under the name of computations at infinity in the 80s. In modern days of the Internet and stream processing, its importance lies in connection to infinite data structure processing. Recently, an algorithm was presented that semi-decides a weaker property -- of productivity of logic programs. A logic program is productive if it can give rise to productive derivations. In this paper we strengthen these recent results. We propose a method that semi-decides productivity of individual derivations for regular formulae. Thus we at last give an algorithmic counterpart to the notion of productivity of derivations in logic programming. This is the first algorithmic solution to the problem since it was raised more than 30 years ago. We also present an implementation of this algorithm.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no figure

    Computing the core of ideals in arbitrary characteristic

    Get PDF
    Let RR be a local Gorenstein ring with infinite residue field of arbitrary characteristic. Let II be an RR--ideal with g=\height I >0, analytic spread \ell, and let JJ be a minimal reduction of II. We further assume that II satisfies GG_{\ell} and {\depth} R/I^j \geq \dim R/I -j+1 for 1jg1 \leq j \leq \ell-g. The question we are interested in is whether \core{I}=J^{n+1}:\ds \sum_{b \in I} (J,b)^n for n0n \gg 0. In the case of analytic spread one Polini and Ulrich show that this is true with even weaker assumptions (\cite[Theorem 3.4]{PU}). We give a negative answer to this question for higher analytic spreads and suggest a formula for the core of such ideals.Comment: 13 pages, revised. To appear in the Journal of Algebr

    A Note on Shortest Developments

    Full text link
    De Vrijer has presented a proof of the finite developments theorem which, in addition to showing that all developments are finite, gives an effective reduction strategy computing longest developments as well as a simple formula computing their length. We show that by applying a rather simple and intuitive principle of duality to de Vrijer's approach one arrives at a proof that some developments are finite which in addition yields an effective reduction strategy computing shortest developments as well as a simple formula computing their length. The duality fails for general beta-reduction. Our results simplify previous work by Khasidashvili

    Reinterpreting Compression in Infinitary Rewriting

    Get PDF
    Departing from a computational interpretation of compression in infinitary rewriting, we view compression as a degenerate case of standardisation. The change in perspective comes about via two observations: (a) no compression property can be recovered for non-left-linear systems and (b) some standardisation procedures, as a ‘side-effect’, yield compressed reductions

    Immunity and Simplicity for Exact Counting and Other Counting Classes

    Full text link
    Ko [RAIRO 24, 1990] and Bruschi [TCS 102, 1992] showed that in some relativized world, PSPACE (in fact, ParityP) contains a set that is immune to the polynomial hierarchy (PH). In this paper, we study and settle the question of (relativized) separations with immunity for PH and the counting classes PP, C_{=}P, and ParityP in all possible pairwise combinations. Our main result is that there is an oracle A relative to which C_{=}P contains a set that is immune to BPP^{ParityP}. In particular, this C_{=}P^A set is immune to PH^{A} and ParityP^{A}. Strengthening results of Tor\'{a}n [J.ACM 38, 1991] and Green [IPL 37, 1991], we also show that, in suitable relativizations, NP contains a C_{=}P-immune set, and ParityP contains a PP^{PH}-immune set. This implies the existence of a C_{=}P^{B}-simple set for some oracle B, which extends results of Balc\'{a}zar et al. [SIAM J.Comp. 14, 1985; RAIRO 22, 1988] and provides the first example of a simple set in a class not known to be contained in PH. Our proof technique requires a circuit lower bound for ``exact counting'' that is derived from Razborov's [Mat. Zametki 41, 1987] lower bound for majority.Comment: 20 page

    The Generalized Moyal Nahm and Continuous Moyal Toda Equations

    Get PDF
    We present in detail a class of solutions to the 4DSU()4D SU(\infty) Moyal Anti Self Dual Yang Mills equations that are related to reductionsreductions of the generalized Moyal Nahm quations using the Ivanova-Popov ansatz. The former yields solutions to the ASDYM/SDYM equations for arbitary gauge groups. A further dimensional reduction yields solutions to the Moyal Anti Self Dual Gravitational equations. The Self Dual Yang Mills /Self Dual Gravity case requires a separate study. SU(2) and SU()SU(\infty) (continuous) Moyal Toda equations are derived and solutions to the latter equations in implicitimplicit form are proposed via the Lax-Brockett double commutator formalism . An explicit map taking the Moyal heavenly form (after a rotational Killing symmetry reduction) into the SU(2) Moyal Toda field is found. Finally, the generalized Moyal Nahm equations are conjectured that contain the continuous SU()SU(\infty) Moyal Toda equation after a suitable reduction. Three different embeddings of the three different types of Moyal Toda equations into the Moyal Nahm equations are discussed.Comment: Revised TEX file. 31 pages. The Legendre transform between the Moyal heavenly form and the Moyal Toda field is solve

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Extensional and Intensional Strategies

    Full text link
    This paper is a contribution to the theoretical foundations of strategies. We first present a general definition of abstract strategies which is extensional in the sense that a strategy is defined explicitly as a set of derivations of an abstract reduction system. We then move to a more intensional definition supporting the abstract view but more operational in the sense that it describes a means for determining such a set. We characterize the class of extensional strategies that can be defined intensionally. We also give some hints towards a logical characterization of intensional strategies and propose a few challenging perspectives
    corecore