1,717 research outputs found

    Force-induced misfolding in RNA

    Get PDF
    RNA folding is a kinetic process governed by the competition of a large number of structures stabilized by the transient formation of base pairs that may induce complex folding pathways and the formation of misfolded structures. Despite of its importance in modern biophysics, the current understanding of RNA folding kinetics is limited by the complex interplay between the weak base-pair interactions that stabilize the native structure and the disordering effect of thermal forces. The possibility of mechanically pulling individual molecules offers a new perspective to understand the folding of nucleic acids. Here we investigate the folding and misfolding mechanism in RNA secondary structures pulled by mechanical forces. We introduce a model based on the identification of the minimal set of structures that reproduce the patterns of force-extension curves obtained in single molecule experiments. The model requires only two fitting parameters: the attempt frequency at the level of individual base pairs and a parameter associated to a free energy correction that accounts for the configurational entropy of an exponentially large number of neglected secondary structures. We apply the model to interpret results recently obtained in pulling experiments in the three-helix junction S15 RNA molecule (RNAS15). We show that RNAS15 undergoes force-induced misfolding where force favors the formation of a stable non-native hairpin. The model reproduces the pattern of unfolding and refolding force-extension curves, the distribution of breakage forces and the misfolding probability obtained in the experiments.Comment: 28 pages, 11 figure

    Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot

    Get PDF
    The functions of RNA pseudoknots (PKs), which are minimal tertiary structural motifs and an integral part of several ribozymes and ribonucleoprotein complexes, are determined by their structure, stability and dynamics. Therefore, it is important to elucidate the general principles governing their thermodynamics/folding mechanisms. Here, we combine experiments and simulations to examine the folding/unfolding pathways of the VPK pseudoknot, a variant of the Mouse Mammary Tumor Virus (MMTV) PK involved in ribosomal frameshifting. Fluorescent nucleotide analogs (2-aminopurine and pyrrolocytidine) placed at different stem/loop positions in the PK, and laser temperature-jump approaches serve as local probes allowing us to monitor the order of assembly of VPK with two helices with different intrinsic stabilities. The experiments and molecular simulations show that at 50 mM KCl the dominant folding pathway populates only the more stable partially folded hairpin. As the salt concentration is increased a parallel folding pathway emerges, involving the less stable hairpin structure as an alternate intermediate. Notably, the flux between the pathways is modulated by the ionic strength. The findings support the principle that the order of PK structure formation is determined by the relative stabilities of the hairpins, which can be altered by sequence variations or salt concentrations. Our study not only unambiguously demonstrates that PK folds by parallel pathways, but also establishes that quantitative description of RNA self-assembly requires a synergistic combination of experiments and simulations.Comment: Supporting Information include

    Autism-associated SNPs in the clock genes _npas2_, _per1_ and the homeobox gene _en2_ alter DNA sequences that show characteristics of microRNA genes.

    Get PDF
    Intronic single nucleotide polymorphisms (SNPs) in the clock genes _npas2_ and _per1_ and the homeobox gene _en2_ are reported to be associated with autism. This bioinformatics analysis of the intronic regions which contain the autism-associated SNPs rs1861972 and rs1861973 in _en2_, rs1811399 in _npas2_, and rs885747 in _per1_, shows that these regions encode RNA transcripts with predicted structural characteristics of microRNAs. These microRNA-like structures are disrupted _in silico_ by the presence of the autism enriched alleles of rs1861972, rs1861973, rs1811399 and rs885747 specifically, as compared with the minor alleles of these SNPs. The predicted gene targets of these microRNA-like structures include genes reported to be implicated in autism (_gabrb3_, _shank3_) and genes causative of diseases co-morbid with autism (_mecp2_ and _rai1_). The inheritance of the AC haplotype of rs1861972 - rs1861973 in _en2_, the C allele of rs1811399 in _npas2_, and the C allele of rs1234747 in _per1_ may contribute to the causes of autism by affecting microRNA genes that are co-expressed along with the homeobox gene _en2_ and the circadian genes _npas2_ and _per1_

    Ab initio RNA folding

    Full text link
    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, experimental determination of RNA structures through X-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.Comment: 28 pages, 18 figure

    Experimental Progress in Computation by Self-Assembly of DNA Tilings

    Get PDF
    Approaches to DNA-based computing by self-assembly require the use of D. T A nanostructures, called tiles, that have efficient chemistries, expressive computational power: and convenient input and output (I/O) mechanisms. We have designed two new classes of DNA tiles: TAO and TAE, both of which contain three double-helices linked by strand exchange. Structural analysis of a TAO molecule has shown that the molecule assembles efficiently from its four component strands. Here we demonstrate a novel method for I/O whereby multiple tiles assemble around a single-stranded (input) scaffold strand. Computation by tiling theoretically results in the formation of structures that contain single-stranded (output) reported strands, which can then be isolated for subsequent steps of computation if necessary. We illustrate the advantages of TAO and TAE designs by detailing two examples of massively parallel arithmetic: construction of complete XOR and addition tables by linear assemblies of DNA tiles. The three helix structures provide flexibility for topological routing of strands in the computation: allowing the implementation of string tile models

    A model for the force stretching double-stranded chain molecules

    Full text link
    We modify and extend the recently developed statistical mechanical model for predicting the thermodynamic properties of chain molecules having noncovalent double-stranded conformations, as in RNA or ssDNA, and β\beta-sheets in protein, by including the constant force stretching at one end of molecules as in a typical single-molecule experiment. The conformations of double-stranded regions of the chain are calculated based on polymer graph-theoretic approach [S-J. Chen and K. A. Dill, J. Chem. Phys. {\bf109}, 4602(1998)], while the unpaired single-stranded regions are treated as self-avoiding walks. Sequence dependence and excluded volume interaction are taken into account explicitly. Two classes of conformations, hairpin and RNA secondary structure are explored. For the hairpin conformations, all possible end-to-end distances corresponding to the different types of double-stranded regions are enumerated exactly. For the RNA secondary structure conformations, a new recursive formula incorporating the secondary structure and end-to-end distribution has been derived. Using the model, we investigate the extension-force curves, contact and population distributions and re-entering phenomena, respectively. we find that the force stretching homogeneous chains of hairpin and secondary structure conformations are very different: the unfolding of hairpins is two-state, while unfolding the latter is one-state. In addition, re-entering transitions only present in hairpin conformations, but are not observed in secondary structure conformations.Comment: 19 pages, 28 figure
    corecore