843 research outputs found

    Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry

    Full text link
    Due to the isotropy dd-dimensional hyperbolic space, there exist a spherically symmetric fundamental solution for its corresponding Laplace-Beltrami operator. On the RR-radius hyperboloid model of dd-dimensional hyperbolic geometry with R>0R>0 and d2d\ge 2, we compute azimuthal Fourier expansions for a fundamental solution of Laplace's equation. For d2d\ge 2, we compute a Gegenbauer polynomial expansion in geodesic polar coordinates for a fundamental solution of Laplace's equation on this negative-constant sectional curvature Riemannian manifold. In three-dimensions, an addition theorem for the azimuthal Fourier coefficients of a fundamental solution for Laplace's equation is obtained through comparison with its corresponding Gegenbauer expansion.Comment: arXiv admin note: substantial text overlap with arXiv:1201.440

    One-Step Recurrences for Stationary Random Fields on the Sphere

    Full text link
    Recurrences for positive definite functions in terms of the space dimension have been used in several fields of applications. Such recurrences typically relate to properties of the system of special functions characterizing the geometry of the underlying space. In the case of the sphere Sd1Rd{\mathbb S}^{d-1} \subset {\mathbb R}^d the (strict) positive definiteness of the zonal function f(cosθ)f(\cos \theta) is determined by the signs of the coefficients in the expansion of ff in terms of the Gegenbauer polynomials {Cnλ}\{C^\lambda_n\}, with λ=(d2)/2\lambda=(d-2)/2. Recent results show that classical differentiation and integration applied to ff have positive definiteness preserving properties in this context. However, in these results the space dimension changes in steps of two. This paper develops operators for zonal functions on the sphere which preserve (strict) positive definiteness while moving up and down in the ladder of dimensions by steps of one. These fractional operators are constructed to act appropriately on the Gegenbauer polynomials {Cnλ}\{C^\lambda_n\}

    Radial Coordinates for Conformal Blocks

    Full text link
    We develop the theory of conformal blocks in CFT_d expressing them as power series with Gegenbauer polynomial coefficients. Such series have a clear physical meaning when the conformal block is analyzed in radial quantization: individual terms describe contributions of descendants of a given spin. Convergence of these series can be optimized by a judicious choice of the radial quantization origin. We argue that the best choice is to insert the operators symmetrically. We analyze in detail the resulting "rho-series" and show that it converges much more rapidly than for the commonly used variable z. We discuss how these conformal block representations can be used in the conformal bootstrap. In particular, we use them to derive analytically some bootstrap bounds whose existence was previously found numerically.Comment: 27 pages, 9 figures; v2: misprints correcte

    Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry

    Full text link
    For a fundamental solution of Laplace's equation on the RR-radius dd-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler-Coulomb and isotropic oscillator potentials

    Large Parameter Cases of the Gauss Hypergeometric Function

    Get PDF
    We consider the asymptotic behaviour of the Gauss hypergeometric function when several of the parameters a, b, c are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Krawtchouk, Meixner, etc.), which results are already available and which cases need more attention. We also consider a few examples of 3F2-functions of unit argument, to explain which difficulties arise in these cases, when standard integrals or differential equations are not available.Comment: 21 pages, 4 figure
    corecore