1,344 research outputs found

    Multidisciplinary computational aerosciences

    Get PDF
    As the challenges of single disciplinary computational physics are met, such as computational fluid dynamics, computational structural mechanics, computational propulsion, computational aeroacoustics, computational electromagnetics, etc., scientists have begun investigating the combination of these single disciplines into what is being called multidisciplinary computational aerosciences (MCAS). The combination of several disciplines not only offers simulation realism but also formidable computational challenges. The solution of such problems will require computers orders of magnitude larger than those currently available. Such computer power can only be supplied by massively parallel machines because of the current speed-of-light limitation of conventional serial systems. Even with such machines, MCAS problems will require hundreds of hours for their solution. To efficiently utilize such a machine, research is required in three areas that include parallel architectures, systems software, and applications software. The main emphasis of this paper is the applications software element. Examples that demonstrate application software for multidisciplinary problems currently being solved at NASA Ames Research Center are presented. Pacing items for MCAS are discussed such as solution methodology, physical modeling, computer power, and multidisciplinary validation experiments

    Технологія CUDA для підвищення ефективності руху повітряного судна

    Get PDF
    Considered the method of parallel computing based on CUDA-architecture with detecting largeand small scale details of turbulence flow to adapt flight dynamics for motion control of the aircraft. Definedthe acceleration value of the parallel implementation relatively to series and the integraleffectiveness of parallel computing that allows to use the NVIDIA Tegra graphics processors toincrease the processing power of massively parallel calculationsРассмотрен метод параллельных вычислений, основанный на CUDA-архитектуре, с обнаружением больших имелких деталей турбулентного потока для адаптации динамики полета при управлении движением самолета.Определено значение ускорения параллельной реализации относительно последовательной и интегральнаяэффективность параллельных вычислений, что позволяет использовать графические процессоры NVIDIA Tegraдля увеличения вычислительной мощности массивно-параллельных расчетовРозглянуто метод паралельних обчислень на основі CUDA-архітектури з визначенням великих і малих деталей турбулентного потоку для адаптації динаміки польоту під час керування рухом повітряного судна. Визначено значення прискорення паралельної реалізації відносно послідовної та інтегральну ефективність паралельних обчислень, що дозволяє використовувати графічні процесори NVIDIA Tegra для збільшення обчислювальної потужності масивно-паралельних розрахункі

    NASA's supercomputing experience

    Get PDF
    A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed

    High performance conjugate heat transfer with the openpalm coupler

    Get PDF
    Optimizing gas turbines is a complex multi-physical and multi-component problem that has long been based on expensive experiments. Today, computer simulations can reduce design process costs and are acknowledged as a promising path for optimization. Although the simulations of specific components of gas turbines become accessible, these stand-alone simulations face a new challenge: to improve the quality of the results, new physics must be introduced. Based on the simulation of conjugate heat transfer within an industrial combustor to predict the temperature of its walls, the current work aims at studying the scalability of code coupling on HPC architectures. Coupling accurately solvers on massively parallel architectures while maintaining their scalability is challenging. The strategy investigated relies on recent developments made in a generic parallel coupler. Performance tests have been carried out until 12,288 cores on the CURIE supercomputer (TGCC / CEA). Results show a good behavior and advanced analyzes are carried out in order to draw new paths for future developments in coupled simulations

    Unstructured mesh algorithms for aerodynamic calculations

    Get PDF
    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined
    corecore