22,671 research outputs found

    Intersection of paraboloids and application to Minkowski-type problems

    Full text link
    In this article, we study the intersection (or union) of the convex hull of N confocal paraboloids (or ellipsoids) of revolution. This study is motivated by a Minkowski-type problem arising in geometric optics. We show that in each of the four cases, the combinatorics is given by the intersection of a power diagram with the unit sphere. We prove the complexity is O(N) for the intersection of paraboloids and Omega(N^2) for the intersection and the union of ellipsoids. We provide an algorithm to compute these intersections using the exact geometric computation paradigm. This algorithm is optimal in the case of the intersection of ellipsoids and is used to solve numerically the far-field reflector problem

    Singularities and Quantum Gravity

    Full text link
    Although there is general agreement that a removal of classical gravitational singularities is not only a crucial conceptual test of any approach to quantum gravity but also a prerequisite for any fundamental theory, the precise criteria for non-singular behavior are often unclear or controversial. Often, only special types of singularities such as the curvature singularities found in isotropic cosmological models are discussed and it is far from clear what this implies for the very general singularities that arise according to the singularity theorems of general relativity. In these lectures we present an overview of the current status of singularities in classical and quantum gravity, starting with a review and interpretation of the classical singularity theorems. This suggests possible routes for quantum gravity to evade the devastating conclusion of the theorems by different means, including modified dynamics or modified geometrical structures underlying quantum gravity. The latter is most clearly present in canonical quantizations which are discussed in more detail. Finally, the results are used to propose a general scheme of singularity removal, quantum hyperbolicity, to show cases where it is realized and to derive intuitive semiclassical pictures of cosmological bounces.Comment: 41 pages, lecture course at the XIIth Brazilian School on Cosmology and Gravitation, September 200

    Mathematical and computational studies of equilibrium capillary free surfaces

    Get PDF
    The results of several independent studies are presented. The general question is considered of whether a wetting liquid always rises higher in a small capillary tube than in a larger one, when both are dipped vertically into an infinite reservoir. An analytical investigation is initiated to determine the qualitative behavior of the family of solutions of the equilibrium capillary free-surface equation that correspond to rotationally symmetric pendent liquid drops and the relationship of these solutions to the singular solution, which corresponds to an infinite spike of liquid extending downward to infinity. The block successive overrelaxation-Newton method and the generalized conjugate gradient method are investigated for solving the capillary equation on a uniform square mesh in a square domain, including the case for which the solution is unbounded at the corners. Capillary surfaces are calculated on the ellipse, on a circle with reentrant notches, and on other irregularly shaped domains using JASON, a general purpose program for solving nonlinear elliptic equations on a nonuniform quadrilaterial mesh. Analytical estimates for the nonexistence of solutions of the equilibrium capillary free-surface equation on the ellipse in zero gravity are evaluated

    An asynchronous leapfrog method II

    Full text link
    A second order explicit one-step numerical method for the initial value problem of the general ordinary differential equation is proposed. It is obtained by natural modifications of the well-known leapfrog method, which is a second order, two-step, explicit method. According to the latter method, the input data for an integration step are two system states, which refer to different times. The usage of two states instead of a single one can be seen as the reason for the robustness of the method. Since the time step size thus is part of the step input data, it is complicated to change this size during the computation of a discrete trajectory. This is a serious drawback when one needs to implement automatic time step control. The proposed modification transforms one of the two input states into a velocity and thus gets rid of the time step dependency in the step input data. For these new step input data, the leapfrog method gives a unique prescription how to evolve them stepwise. The stability properties of this modified method are the same as for the original one: the set of absolute stability is the interval [-i,+i] on the imaginary axis. This implies exponential growth of trajectories in situations where the exact trajectory has an asymptote. By considering new evolution steps that are composed of two consecutive old evolution steps we can average over the velocities of the sub-steps and get an integrator with a much larger set of absolute stability, which is immune to the asymptote problem. The method is exemplified with the equation of motion of a one-dimensional non-linear oscillator describing the radial motion in the Kepler problem.Comment: 41 pages, 25 figure

    Differential equations and exact solutions in the moving sofa problem

    Full text link
    The moving sofa problem, posed by L. Moser in 1966, asks for the planar shape of maximal area that can move around a right-angled corner in a hallway of unit width, and is conjectured to have as its solution a complicated shape derived by Gerver in 1992. We extend Gerver's techniques by deriving a family of six differential equations arising from the area-maximization property. We then use this result to derive a new shape that we propose as a possible solution to the "ambidextrous moving sofa problem," a variant of the problem previously studied by Conway and others in which the shape is required to be able to negotiate a right-angle turn both to the left and to the right. Unlike Gerver's construction, our new shape can be expressed in closed form, and its boundary is a piecewise algebraic curve. Its area is equal to X+arctanYX+\arctan Y, where XX and YY are solutions to the cubic equations x2(x+3)=8x^2(x+3)=8 and x(4x2+3)=1x(4x^2+3)=1, respectively.Comment: Version 2 update: added figures and expanded discussion in section 6. Version 3 update: simplified algebraic formulas in section

    A two-way regularization method for MEG source reconstruction

    Get PDF
    The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS531 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore