8,505 research outputs found

    From Stereogram to Surface: How the Brain Sees the World in Depth

    Full text link
    When we look at a scene, how do we consciously see surfaces infused with lightness and color at the correct depths? Random Dot Stereograms (RDS) probe how binocular disparity between the two eyes can generate such conscious surface percepts. Dense RDS do so despite the fact that they include multiple false binocular matches. Sparse stereograms do so even across large contrast-free regions with no binocular matches. Stereograms that define occluding and occluded surfaces lead to surface percepts wherein partially occluded textured surfaces are completed behind occluding textured surfaces at a spatial scale much larger than that of the texture elements themselves. Earlier models suggest how the brain detects binocular disparity, but not how RDS generate conscious percepts of 3D surfaces. A neural model predicts how the layered circuits of visual cortex generate these 3D surface percepts using interactions between visual boundary and surface representations that obey complementary computational rules.Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (EIA-01-30851, SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Neural Models of Motion Integration, Segmentation, and Probablistic Decision-Making

    Full text link
    When brain mechanism carry out motion integration and segmentation processes that compute unambiguous global motion percepts from ambiguous local motion signals? Consider, for example, a deer running at variable speeds behind forest cover. The forest cover is an occluder that creates apertures through which fragments of the deer's motion signals are intermittently experienced. The brain coherently groups these fragments into a trackable percept of the deer in its trajectory. Form and motion processes are needed to accomplish this using feedforward and feedback interactions both within and across cortical processing streams. All the cortical areas V1, V2, MT, and MST are involved in these interactions. Figure-ground processes in the form stream through V2, such as the seperation of occluding boundaries of the forest cover from the boundaries of the deer, select the motion signals which determine global object motion percepts in the motion stream through MT. Sparse, but unambiguous, feauture tracking signals are amplified before they propogate across position and are intergrated with far more numerous ambiguous motion signals. Figure-ground and integration processes together determine the global percept. A neural model predicts the processing stages that embody these form and motion interactions. Model concepts and data are summarized about motion grouping across apertures in response to a wide variety of displays, and probabilistic decision making in parietal cortex in response to random dot displays.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Computing motion in the primate's visual system

    Get PDF
    Computing motion on the basis of the time-varying image intensity is a difficult problem for both artificial and biological vision systems. We will show how one well-known gradient-based computer algorithm for estimating visual motion can be implemented within the primate's visual system. This relaxation algorithm computes the optical flow field by minimizing a variational functional of a form commonly encountered in early vision, and is performed in two steps. In the first stage, local motion is computed, while in the second stage spatial integration occurs. Neurons in the second stage represent the optical flow field via a population-coding scheme, such that the vector sum of all neurons at each location codes for the direction and magnitude of the velocity at that location. The resulting network maps onto the magnocellular pathway of the primate visual system, in particular onto cells in the primary visual cortex (V1) as well as onto cells in the middle temporal area (MT). Our algorithm mimics a number of psychophysical phenomena and illusions (perception of coherent plaids, motion capture, motion coherence) as well as electrophysiological recordings. Thus, a single unifying principle ‘the final optical flow should be as smooth as possible’ (except at isolated motion discontinuities) explains a large number of phenomena and links single-cell behavior with perception and computational theory

    Information Compression, Intelligence, Computing, and Mathematics

    Full text link
    This paper presents evidence for the idea that much of artificial intelligence, human perception and cognition, mainstream computing, and mathematics, may be understood as compression of information via the matching and unification of patterns. This is the basis for the "SP theory of intelligence", outlined in the paper and fully described elsewhere. Relevant evidence may be seen: in empirical support for the SP theory; in some advantages of information compression (IC) in terms of biology and engineering; in our use of shorthands and ordinary words in language; in how we merge successive views of any one thing; in visual recognition; in binocular vision; in visual adaptation; in how we learn lexical and grammatical structures in language; and in perceptual constancies. IC via the matching and unification of patterns may be seen in both computing and mathematics: in IC via equations; in the matching and unification of names; in the reduction or removal of redundancy from unary numbers; in the workings of Post's Canonical System and the transition function in the Universal Turing Machine; in the way computers retrieve information from memory; in systems like Prolog; and in the query-by-example technique for information retrieval. The chunking-with-codes technique for IC may be seen in the use of named functions to avoid repetition of computer code. The schema-plus-correction technique may be seen in functions with parameters and in the use of classes in object-oriented programming. And the run-length coding technique may be seen in multiplication, in division, and in several other devices in mathematics and computing. The SP theory resolves the apparent paradox of "decompression by compression". And computing and cognition as IC is compatible with the uses of redundancy in such things as backup copies to safeguard data and understanding speech in a noisy environment

    The role of terminators and occlusion cues in motion integration and segmentation: a neural network model

    Get PDF
    The perceptual interaction of terminators and occlusion cues with the functional processes of motion integration and segmentation is examined using a computational model. Inte-gration is necessary to overcome noise and the inherent ambiguity in locally measured motion direction (the aperture problem). Segmentation is required to detect the presence of motion discontinuities and to prevent spurious integration of motion signals between objects with different trajectories. Terminators are used for motion disambiguation, while occlusion cues are used to suppress motion noise at points where objects intersect. The model illustrates how competitive and cooperative interactions among cells carrying out these functions can account for a number of perceptual effects, including the chopsticks illusion and the occluded diamond illusion. Possible links to the neurophysiology of the middle temporal visual area (MT) are suggested

    Where creativity comes from: the social spaces of embodied minds

    Get PDF
    This paper explores creative design, social interaction and perception. It proposes that creativity at a social level is not a result of many individuals trying to be creative at a personal level, but occurs naturally in the social interaction between comparatively simple minds embodied in a complex world. Particle swarm algorithms can model group interaction in shared spaces, but design space is not necessarily one pre-defined space of set parameters on which everyone can agree, as individual minds are very different. A computational model is proposed that allows a similar swarm to occur between spaces of different description and even dimensionality. This paper explores creative design, social interaction and perception. It proposes that creativity at a social level is not a result of many individuals trying to be creative at a personal level, but occurs naturally in the social interaction between comparatively simple minds embodied in a complex world. Particle swarm algorithms can model group interaction in shared spaces, but design space is not necessarily one pre-defined space of set parameters on which everyone can agree, as individual minds are very different. A computational model is proposed that allows a similar swarm to occur between spaces of different description and even dimensionality

    Laminar Cortical Dynamics of Visual Form and Motion Interactions During Coherent Object Motion Perception

    Full text link
    How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? A 3D FORMOTION model specifies how 3D boundary representations, which separate figures from backgrounds within cortical area V2, capture motion signals at the appropriate depths in MT; how motion signals in MT disambiguate boundaries in V2 via MT-to-Vl-to-V2 feedback; how sparse feature tracking signals are amplified; and how a spatially anisotropic motion grouping process propagates across perceptual space via MT-MST feedback to integrate feature-tracking and ambiguous motion signals to determine a global object motion percept. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.Air Force Office of Scientific Research (F49620-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (BCS-02-35398, SBE-0354378); Office of Naval Research (N00014-95-1-0409, N00014-01-1-0624
    • …
    corecore