83 research outputs found

    Analysis of combinatorial search spaces for a class of NP-hard problems, An

    Get PDF
    2011 Spring.Includes bibliographical references.Given a finite but very large set of states X and a real-valued objective function ƒ defined on X, combinatorial optimization refers to the problem of finding elements of X that maximize (or minimize) ƒ. Many combinatorial search algorithms employ some perturbation operator to hill-climb in the search space. Such perturbative local search algorithms are state of the art for many classes of NP-hard combinatorial optimization problems such as maximum k-satisfiability, scheduling, and problems of graph theory. In this thesis we analyze combinatorial search spaces by expanding the objective function into a (sparse) series of basis functions. While most analyses of the distribution of function values in the search space must rely on empirical sampling, the basis function expansion allows us to directly study the distribution of function values across regions of states for combinatorial problems without the need for sampling. We concentrate on objective functions that can be expressed as bounded pseudo-Boolean functions which are NP-hard to solve in general. We use the basis expansion to construct a polynomial-time algorithm for exactly computing constant-degree moments of the objective function ƒ over arbitrarily large regions of the search space. On functions with restricted codomains, these moments are related to the true distribution by a system of linear equations. Given low moments supplied by our algorithm, we construct bounds of the true distribution of ƒ over regions of the space using a linear programming approach. A straightforward relaxation allows us to efficiently approximate the distribution and hence quickly estimate the count of states in a given region that have certain values under the objective function. The analysis is also useful for characterizing properties of specific combinatorial problems. For instance, by connecting search space analysis to the theory of inapproximability, we prove that the bound specified by Grover's maximum principle for the Max-Ek-Lin-2 problem is sharp. Moreover, we use the framework to prove certain configurations are forbidden in regions of the Max-3-Sat search space, supplying the first theoretical confirmation of empirical results by others. Finally, we show that theoretical results can be used to drive the design of algorithms in a principled manner by using the search space analysis developed in this thesis in algorithmic applications. First, information obtained from our moment retrieving algorithm can be used to direct a hill-climbing search across plateaus in the Max-k-Sat search space. Second, the analysis can be used to control the mutation rate on a (1+1) evolutionary algorithm on bounded pseudo-Boolean functions so that the offspring of each search point is maximized in expectation. For these applications, knowledge of the search space structure supplied by the analysis translates to significant gains in the performance of search

    Fitness function distributions over generalized search neighborhoods in the q-ary hypercube

    Get PDF
    Evolutionary Computation, 21(4): 561-590, 2013The frequency distribution of a fitness function over regions of its domain is an important quantity for understanding the behavior of algorithms that employ randomized sampling to search the function. In general, exactly characterizing this distribution is at least as hard as the search problem, since the solutions typically live in the tails of the distribution. However, in some cases it is possible to efficiently retrieve a collection of quantities (called moments) that describe the distribution. In this paper, we consider functions of bounded epistasis that are defined over length-n strings from a finite alphabet of cardinality q. Many problems in combinatorial optimization can be specified as search problems over functions of this type. Employing Fourier analysis of functions over finite groups, we derive an efficient method for computing the exact moments of the frequency distribution of fitness functions over Hamming regions of the q-ary hypercube. We then use this approach to derive equations that describe the expected fitness of the offspring of any point undergoing uniform mutation. The results we present provide insight into the statistical structure of the fitness function for a number of combinatorial problems. For the graph coloring problem, we apply our results to efficiently compute the average number of constraint violations that lie within a certain number of steps of any coloring. We derive an expression for the mutation rate that maximizes the expected fitness of an offspring at each fitness level. We also apply the results to the slightly more complex frequency assignment problem, a relevant application in the domain of the telecommunications industry. As with the graph coloring problem, we provide formulas for the average value of the fitness function in Hamming regions around a solution and the expectation-optimal mutation rate.Spanish Ministry of Science and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M∗ project). Andalusian Government under contract P07-TIC-03044 (DIRICOM project). Air Force Office of Scientific Re- search, Air Force Materiel Command, USAF, under grant number FA9550-08-1-0422

    Exact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum

    Get PDF
    Chicano, F., & Alba E. (2012). Exact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum. (Hao, J-K., & Middendorf M., Ed.).Evolutionary Computation in Combinatorial Optimization - 12th European Conference, EvoCOP 2012, Málaga, Spain, April 11-13, 2012. Proceedings. 111–123.Landscape theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a special kind of landscapes called elementary landscapes. The decomposition of the objective function of a problem into its elementary components can be exploited to compute summary statistics. We present closed-form expressions for the fitness-distance correlation (FDC) based on the elementary landscape decomposition of the problems defined over binary strings in which the objective function has one global optimum. We present some theoretical results that raise some doubts on using FDC as a measure of problem difficulty.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish Ministry of Science and Innovation and FEDER under contracts TIN2008-06491-C04-01 and TIN2011-28194. Andalusian Government under contract P07-TIC-03044

    Optimal Hashing-based Time-Space Trade-offs for Approximate Near Neighbors

    Full text link
    [See the paper for the full abstract.] We show tight upper and lower bounds for time-space trade-offs for the cc-Approximate Near Neighbor Search problem. For the dd-dimensional Euclidean space and nn-point datasets, we develop a data structure with space n1+ρu+o(1)+O(dn)n^{1 + \rho_u + o(1)} + O(dn) and query time nρq+o(1)+dno(1)n^{\rho_q + o(1)} + d n^{o(1)} for every ρu,ρq≄0\rho_u, \rho_q \geq 0 such that: \begin{equation} c^2 \sqrt{\rho_q} + (c^2 - 1) \sqrt{\rho_u} = \sqrt{2c^2 - 1}. \end{equation} This is the first data structure that achieves sublinear query time and near-linear space for every approximation factor c>1c > 1, improving upon [Kapralov, PODS 2015]. The data structure is a culmination of a long line of work on the problem for all space regimes; it builds on Spherical Locality-Sensitive Filtering [Becker, Ducas, Gama, Laarhoven, SODA 2016] and data-dependent hashing [Andoni, Indyk, Nguyen, Razenshteyn, SODA 2014] [Andoni, Razenshteyn, STOC 2015]. Our matching lower bounds are of two types: conditional and unconditional. First, we prove tightness of the whole above trade-off in a restricted model of computation, which captures all known hashing-based approaches. We then show unconditional cell-probe lower bounds for one and two probes that match the above trade-off for ρq=0\rho_q = 0, improving upon the best known lower bounds from [Panigrahy, Talwar, Wieder, FOCS 2010]. In particular, this is the first space lower bound (for any static data structure) for two probes which is not polynomially smaller than the one-probe bound. To show the result for two probes, we establish and exploit a connection to locally-decodable codes.Comment: 62 pages, 5 figures; a merger of arXiv:1511.07527 [cs.DS] and arXiv:1605.02701 [cs.DS], which subsumes both of the preprints. New version contains more elaborated proofs and fixed some typo

    Exact computation of the fitness-distance correlation for pseudoboolean functions with one global optimum

    Get PDF
    Abstract. Landscape theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a special kind of landscapes called elementary landscapes. The decomposition of the objective function of a problem into its elementary components can be exploited to compute summary statistics. We present closed-form expressions for the fitness-distance correlation (FDC) based on the elementary landscape decomposition of the problems defined over binary strings in which the objective function has one global optimum. We present some theoretical results that raise some doubts on using FDC as a measure of problem difficulty

    Exact computation of the expectation surfaces for uniform crossover along with bit-flip mutation

    Get PDF
    Theoretical Computer Science 545, 2014, pp.76-93,Uniform crossover and bit-flip mutation are two popular operators used in genetic algorithms to generate new solutions in an iteration of the algorithm when the solutions are represented by binary strings. We use the Walsh decomposition of pseudo-Boolean functions and properties of Krawtchouk matrices to exactly compute the expected value for the fitness of a child generated by uniform crossover followed by bit-flip mutation from two parent solutions. We prove that this expectation is a polynomial in ρ, the probability of selecting the best-parent bit in the crossover, and Ό, the probability of flipping a bit in the mutation. We provide efficient algorithms to compute this polynomial for Onemax and MAX-SAT problems, but the results also hold for other problems such as NK-Landscapes. We also analyze the features of the expectation surfaces.Spanish Ministry of Science and Innovation and FEDER under contract TIN2011-28194 (the roadME project). Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number FA9550-11-1-0088

    Elementary landscape decomposition of the 0-1 unconstrained quadratic optimization

    Get PDF
    Journal of Heuristics, 19(4), pp.711-728Landscapes’ theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of an especial kind of landscape called elementary landscape. The elementary landscape decomposition of a combinatorial optimization problem is a useful tool for understanding the problem. Such decomposition provides an additional knowledge on the problem that can be exploited to explain the behavior of some existing algorithms when they are applied to the problem or to create new search methods for the problem. In this paper we analyze the 0-1 Unconstrained Quadratic Optimization from the point of view of landscapes’ theory. We prove that the problem can be written as the sum of two elementary components and we give the exact expressions for these components. We use the landscape decomposition to compute autocorrelation measures of the problem, and show some practical applications of the decomposition.Spanish Ministry of Sci- ence and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M∗ project). Andalusian Government under contract P07-TIC-03044 (DIRICOM project)

    Quasi-elementary Landscapes and Superpositions of Elementary Landscapes

    Get PDF
    Whitley, D., & Chicano F. (2012). Quasi-elementary Landscapes and Superpositions of Elementary Landscapes. (Hamadi, Y., & Schoenauer M., Ed.).Learning and Intelligent Optimization - 6th International Conference, LION 6, Paris, France, January 16-20, 2012, Revised Selected Papers. 277–291.There exist local search landscapes where the evaluation function is an eigenfunction of the graph Laplacian that corresponds to the neighborhood structure of the search space. Problems that display this structure are called “Elementary Landscapes” and they have a number of special mathematical properties. The term “Quasi-elementary landscapes” is introduced to describe landscapes that are “almost” elementary; in quasi-elementary landscapes there exists some efficiently computed “correction” that captures those parts of the neighborhood structure that deviate from the normal structure found in elementary landscapes. The “shift” operator, as well as the “3-opt” operator for the Traveling Salesman Problem landscapes induce quasi-elementary landscapes. A local search neighborhood for the Maximal Clique problem is also quasi-elementary. Finally, we show that landscapes which are a superposition of elementary landscapes can be quasi-elementary in structure.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number FA9550-11-1-0088. Spanish Ministry of Science and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M∗ project). Andalusian Government under contract P07-TIC-03044 (DIRICOM project)

    Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem

    Get PDF
    There exist local search landscapes where the evaluation function is an eigenfunction of the graph Laplacian that corresponds to the neighborhood structure of the search space. Problems that dis- play this structure are called “Elementary Landscapes” and they have a number of special mathematical properties. The problems that are not elementary landscapes can be decomposed in a sum of elementary ones. This sum is called the elementary landscape decomposition of the problem. In this paper, we provide the elementary landscape decomposi- tion for the Hamiltonian Path Optimization Problem under two different neighborhoods.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • 

    corecore