45,410 research outputs found

    Low Space External Memory Construction of the Succinct Permuted Longest Common Prefix Array

    Full text link
    The longest common prefix (LCP) array is a versatile auxiliary data structure in indexed string matching. It can be used to speed up searching using the suffix array (SA) and provides an implicit representation of the topology of an underlying suffix tree. The LCP array of a string of length nn can be represented as an array of length nn words, or, in the presence of the SA, as a bit vector of 2n2n bits plus asymptotically negligible support data structures. External memory construction algorithms for the LCP array have been proposed, but those proposed so far have a space requirement of O(n)O(n) words (i.e. O(nlogn)O(n \log n) bits) in external memory. This space requirement is in some practical cases prohibitively expensive. We present an external memory algorithm for constructing the 2n2n bit version of the LCP array which uses O(nlogσ)O(n \log \sigma) bits of additional space in external memory when given a (compressed) BWT with alphabet size σ\sigma and a sampled inverse suffix array at sampling rate O(logn)O(\log n). This is often a significant space gain in practice where σ\sigma is usually much smaller than nn or even constant. We also consider the case of computing succinct LCP arrays for circular strings

    On Bijective Variants of the Burrows-Wheeler Transform

    Full text link
    The sort transform (ST) is a modification of the Burrows-Wheeler transform (BWT). Both transformations map an arbitrary word of length n to a pair consisting of a word of length n and an index between 1 and n. The BWT sorts all rotation conjugates of the input word, whereas the ST of order k only uses the first k letters for sorting all such conjugates. If two conjugates start with the same prefix of length k, then the indices of the rotations are used for tie-breaking. Both transforms output the sequence of the last letters of the sorted list and the index of the input within the sorted list. In this paper, we discuss a bijective variant of the BWT (due to Scott), proving its correctness and relations to other results due to Gessel and Reutenauer (1993) and Crochemore, Desarmenien, and Perrin (2005). Further, we present a novel bijective variant of the ST.Comment: 15 pages, presented at the Prague Stringology Conference 2009 (PSC 2009

    Why Noise and Dispersion may Seriously Hamper Nonlinear Frequency-Division Multiplexing

    Full text link
    The performance of optical fiber systems based on nonlinear frequency-division multiplexing (NFDM) or on more conventional transmission techniques is compared through numerical simulations. Some critical issues affecting NFDM systems-namely, the strict requirements needed to avoid burst interaction due to signal dispersion and the unfavorable dependence of performance on burst length-are investigated, highlighting their potentially disruptive effect in terms of spectral efficiency. Two digital processing techniques are finally proposed to halve the guard time between NFDM symbol bursts and reduce the size of the processing window at the receiver, increasing spectral efficiency and reducing computational complexity.Comment: The manuscript has been submitted to Photonics Technology Letters for publicatio

    Decision-Feedback Detection Strategy for Nonlinear Frequency-Division Multiplexing

    Full text link
    By exploiting a causality property of the nonlinear Fourier transform, a novel decision-feedback detection strategy for nonlinear frequency-division multiplexing (NFDM) systems is introduced. The performance of the proposed strategy is investigated both by simulations and by theoretical bounds and approximations, showing that it achieves a considerable performance improvement compared to previously adopted techniques in terms of Q-factor. The obtained improvement demonstrates that, by tailoring the detection strategy to the peculiar properties of the nonlinear Fourier transform, it is possible to boost the performance of NFDM systems and overcome current limitations imposed by the use of more conventional detection techniques suitable for the linear regime

    A Fast Algorithm for Parabolic PDE-based Inverse Problems Based on Laplace Transforms and Flexible Krylov Solvers

    Full text link
    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method
    corecore