306 research outputs found

    Certification of Bounds of Non-linear Functions: the Templates Method

    Get PDF
    The aim of this work is to certify lower bounds for real-valued multivariate functions, defined by semialgebraic or transcendental expressions. The certificate must be, eventually, formally provable in a proof system such as Coq. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of inequalities. We introduce an approximation algorithm, which combines ideas of the max-plus basis method (in optimal control) and of the linear templates method developed by Manna et al. (in static analysis). This algorithm consists in bounding some of the constituents of the function by suprema of quadratic forms with a well chosen curvature. This leads to semialgebraic optimization problems, solved by sum-of-squares relaxations. Templates limit the blow up of these relaxations at the price of coarsening the approximation. We illustrate the efficiency of our framework with various examples from the literature and discuss the interfacing with Coq.Comment: 16 pages, 3 figures, 2 table

    Polyhedral Approximation of Multivariate Polynomials using Handelman's Theorem

    No full text
    International audienceConvex polyhedra are commonly used in the static analysis of programs to represent over-approximations of sets of reachable states of numerical program variables. When the analyzed programs contain nonlinear instructions, they do not directly map to standard polyhedral operations: some kind of linearization is needed. Convex polyhe-dra are also used in satisfiability modulo theory solvers which combine a propositional satisfiability solver with a fast emptiness check for polyhedra. Existing decision procedures become expensive when nonlinear constraints are involved: a fast procedure to ensure emptiness of systems of nonlinear constraints is needed. We present a new linearization algorithm based on Handelman's representation of positive polynomials. Given a polyhedron and a polynomial (in)equality, we compute a polyhedron enclosing their intersection as the solution of a parametric linear programming problem. To get a scalable algorithm, we provide several heuristics that guide the construction of the Handelman's representation. To ensure the correctness of our polyhedral approximation , our Ocaml implementation generates certificates verified by a checker certified in Coq

    Equilibria, Fixed Points, and Complexity Classes

    Get PDF
    Many models from a variety of areas involve the computation of an equilibrium or fixed point of some kind. Examples include Nash equilibria in games; market equilibria; computing optimal strategies and the values of competitive games (stochastic and other games); stable configurations of neural networks; analysing basic stochastic models for evolution like branching processes and for language like stochastic context-free grammars; and models that incorporate the basic primitives of probability and recursion like recursive Markov chains. It is not known whether these problems can be solved in polynomial time. There are certain common computational principles underlying different types of equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP. Representative complete problems for these classes are respectively, pure Nash equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and (mixed) Nash equilibria in normal form games with 3 (or more) players. This paper reviews the underlying computational principles and the corresponding classes
    • …
    corecore