58,062 research outputs found

    The Complexity of Weighted Boolean #CSP with Mixed Signs

    Get PDF
    We give a complexity dichotomy for the problem of computing the partition function of a weighted Boolean constraint satisfaction problem. Such a problem is parameterized by a set of rational-valued functions, which generalize constraints. Each function assigns a weight to every assignment to a set of Boolean variables. Our dichotomy extends previous work in which the weight functions were restricted to being non-negative. We represent a weight function as a product of the form (-1)^s g, where the polynomial s determines the sign of the weight and the non-negative function g determines its magnitude. We show that the problem of computing the partition function (the sum of the weights of all possible variable assignments) is in polynomial time if either every weight function can be defined by a "pure affine" magnitude with a quadratic sign polynomial or every function can be defined by a magnitude of "product type" with a linear sign polynomial. In all other cases, computing the partition function is FP^#P-complete.Comment: 24 page

    The Dual Polynomial of Bipartite Perfect Matching

    Get PDF
    We obtain a description of the Boolean dual function of the Bipartite Perfect Matching decision problem, as a multilinear polynomial over the Reals. We show that in this polynomial, both the number of monomials and the magnitude of their coefficients are at most exponential in O(nlogn)\mathcal{O}(n \log n). As an application, we obtain a new upper bound of O(n1.5logn)\mathcal{O}(n^{1.5} \sqrt{\log n}) on the approximate degree of the bipartite perfect matching function, improving the previous best known bound of O(n1.75)\mathcal{O}(n^{1.75}). We deduce that, beyond a O(logn)\mathcal{O}(\sqrt{\log n}) factor, the polynomial method cannot be used to improve the lower bound on the bounded-error quantum query complexity of bipartite perfect matching

    Polynomials that Sign Represent Parity and Descartes' Rule of Signs

    Full text link
    A real polynomial P(X1,...,Xn)P(X_1,..., X_n) sign represents f:An{0,1}f: A^n \to \{0,1\} if for every (a1,...,an)An(a_1, ..., a_n) \in A^n, the sign of P(a1,...,an)P(a_1,...,a_n) equals (1)f(a1,...,an)(-1)^{f(a_1,...,a_n)}. Such sign representations are well-studied in computer science and have applications to computational complexity and computational learning theory. In this work, we present a systematic study of tradeoffs between degree and sparsity of sign representations through the lens of the parity function. We attempt to prove bounds that hold for any choice of set AA. We show that sign representing parity over {0,...,m1}n\{0,...,m-1\}^n with the degree in each variable at most m1m-1 requires sparsity at least mnm^n. We show that a tradeoff exists between sparsity and degree, by exhibiting a sign representation that has higher degree but lower sparsity. We show a lower bound of n(m2)+1n(m -2) + 1 on the sparsity of polynomials of any degree representing parity over {0,...,m1}n\{0,..., m-1\}^n. We prove exact bounds on the sparsity of such polynomials for any two element subset AA. The main tool used is Descartes' Rule of Signs, a classical result in algebra, relating the sparsity of a polynomial to its number of real roots. As an application, we use bounds on sparsity to derive circuit lower bounds for depth-two AND-OR-NOT circuits with a Threshold Gate at the top. We use this to give a simple proof that such circuits need size 1.5n1.5^n to compute parity, which improves the previous bound of 4/3n/2{4/3}^{n/2} due to Goldmann (1997). We show a tight lower bound of 2n2^n for the inner product function over {0,1}n×{0,1}n\{0,1\}^n \times \{0, 1\}^n.Comment: To appear in Computational Complexit

    Low-Sensitivity Functions from Unambiguous Certificates

    Get PDF
    We provide new query complexity separations against sensitivity for total Boolean functions: a power 33 separation between deterministic (and even randomized or quantum) query complexity and sensitivity, and a power 2.222.22 separation between certificate complexity and sensitivity. We get these separations by using a new connection between sensitivity and a seemingly unrelated measure called one-sided unambiguous certificate complexity (UCminUC_{min}). We also show that UCminUC_{min} is lower-bounded by fractional block sensitivity, which means we cannot use these techniques to get a super-quadratic separation between bs(f)bs(f) and s(f)s(f). We also provide a quadratic separation between the tree-sensitivity and decision tree complexity of Boolean functions, disproving a conjecture of Gopalan, Servedio, Tal, and Wigderson (CCC 2016). Along the way, we give a power 1.221.22 separation between certificate complexity and one-sided unambiguous certificate complexity, improving the power 1.1281.128 separation due to G\"o\"os (FOCS 2015). As a consequence, we obtain an improved Ω(log1.22n)\Omega(\log^{1.22} n) lower-bound on the co-nondeterministic communication complexity of the Clique vs. Independent Set problem.Comment: 25 pages. This version expands the results and adds Pooya Hatami and Avishay Tal as author

    On Symmetric Circuits and Fixed-Point Logics

    Get PDF
    We study properties of relational structures such as graphs that are decided by families of Boolean circuits. Circuits that decide such properties are necessarily invariant to permutations of the elements of the input structures. We focus on families of circuits that are symmetric, i.e., circuits whose invariance is witnessed by automorphisms of the circuit induced by the permutation of the input structure. We show that the expressive power of such families is closely tied to definability in logic. In particular, we show that the queries defined on structures by uniform families of symmetric Boolean circuits with majority gates are exactly those definable in fixed-point logic with counting. This shows that inexpressibility results in the latter logic lead to lower bounds against polynomial-size families of symmetric circuits.Comment: 22 pages. Full version of a paper to appear in STACS 201
    corecore