61,629 research outputs found

    Computing the complete CS decomposition

    Full text link
    An algorithm is developed to compute the complete CS decomposition (CSD) of a partitioned unitary matrix. Although the existence of the CSD has been recognized since 1977, prior algorithms compute only a reduced version (the 2-by-1 CSD) that is equivalent to two simultaneous singular value decompositions. The algorithm presented here computes the complete 2-by-2 CSD, which requires the simultaneous diagonalization of all four blocks of a unitary matrix partitioned into a 2-by-2 block structure. The algorithm appears to be the only fully specified algorithm available. The computation occurs in two phases. In the first phase, the unitary matrix is reduced to bidiagonal block form, as described by Sutton and Edelman. In the second phase, the blocks are simultaneously diagonalized using techniques from bidiagonal SVD algorithms of Golub, Kahan, and Demmel. The algorithm has a number of desirable numerical features.Comment: New in v3: additional discussion on efficiency, Wilkinson shifts, connection with tridiagonal QR iteration. New in v2: additional figures and a reorganization of the tex

    Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains

    Get PDF
    A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by polynomial. Significant modification of the regular chains technology was used to achieve the more sophisticated invariance criteria. Experimental results on an implementation in the RegularChains Library for Maple verify that combining these advances gives an algorithm superior to its individual components and competitive with the state of the art

    A Backward Stable Algorithm for Computing the CS Decomposition via the Polar Decomposition

    Full text link
    We introduce a backward stable algorithm for computing the CS decomposition of a partitioned 2nĂ—n2n \times n matrix with orthonormal columns, or a rank-deficient partial isometry. The algorithm computes two nĂ—nn \times n polar decompositions (which can be carried out in parallel) followed by an eigendecomposition of a judiciously crafted nĂ—nn \times n Hermitian matrix. We prove that the algorithm is backward stable whenever the aforementioned decompositions are computed in a backward stable way. Since the polar decomposition and the symmetric eigendecomposition are highly amenable to parallelization, the algorithm inherits this feature. We illustrate this fact by invoking recently developed algorithms for the polar decomposition and symmetric eigendecomposition that leverage Zolotarev's best rational approximations of the sign function. Numerical examples demonstrate that the resulting algorithm for computing the CS decomposition enjoys excellent numerical stability

    Computational Complexity of Atomic Chemical Reaction Networks

    Full text link
    Informally, a chemical reaction network is "atomic" if each reaction may be interpreted as the rearrangement of indivisible units of matter. There are several reasonable definitions formalizing this idea. We investigate the computational complexity of deciding whether a given network is atomic according to each of these definitions. Our first definition, primitive atomic, which requires each reaction to preserve the total number of atoms, is to shown to be equivalent to mass conservation. Since it is known that it can be decided in polynomial time whether a given chemical reaction network is mass-conserving, the equivalence gives an efficient algorithm to decide primitive atomicity. Another definition, subset atomic, further requires that all atoms are species. We show that deciding whether a given network is subset atomic is in NP\textsf{NP}, and the problem "is a network subset atomic with respect to a given atom set" is strongly NP\textsf{NP}-Complete\textsf{Complete}. A third definition, reachably atomic, studied by Adleman, Gopalkrishnan et al., further requires that each species has a sequence of reactions splitting it into its constituent atoms. We show that there is a polynomial-time algorithm\textbf{polynomial-time algorithm} to decide whether a given network is reachably atomic, improving upon the result of Adleman et al. that the problem is decidable\textbf{decidable}. We show that the reachability problem for reachably atomic networks is Pspace\textsf{Pspace}-Complete\textsf{Complete}. Finally, we demonstrate equivalence relationships between our definitions and some special cases of another existing definition of atomicity due to Gnacadja

    Generic Regular Decompositions for Parametric Polynomial Systems

    Full text link
    This paper presents a generalization of our earlier work in [19]. In this paper, the two concepts, generic regular decomposition (GRD) and regular-decomposition-unstable (RDU) variety introduced in [19] for generic zero-dimensional systems, are extended to the case where the parametric systems are not necessarily zero-dimensional. An algorithm is provided to compute GRDs and the associated RDU varieties of parametric systems simultaneously on the basis of the algorithm for generic zero-dimensional systems proposed in [19]. Then the solutions of any parametric system can be represented by the solutions of finitely many regular systems and the decomposition is stable at any parameter value in the complement of the associated RDU variety of the parameter space. The related definitions and the results presented in [19] are also generalized and a further discussion on RDU varieties is given from an experimental point of view. The new algorithm has been implemented on the basis of DISCOVERER with Maple 16 and experimented with a number of benchmarks from the literature.Comment: It is the latest version. arXiv admin note: text overlap with arXiv:1208.611

    A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    Get PDF
    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.Comment: 33 pages, references added, exposition expanded, minor typos corrected. Version published in JHE
    • …
    corecore