8,481 research outputs found

    Empirical Coordination with Two-Sided State Information and Correlated Source and State

    Full text link
    The coordination of autonomous agents is a critical issue for decentralized communication networks. Instead of transmitting information, the agents interact in a coordinated manner in order to optimize a general objective function. A target joint probability distribution is achievable if there exists a code such that the sequences of symbols are jointly typical. The empirical coordination is strongly related to the joint source-channel coding with two-sided state information and correlated source and state. This problem is also connected to state communication and is open for non-causal encoder and decoder. We characterize the optimal solutions for perfect channel, for lossless decoding, for independent source and channel, for causal encoding and for causal decoding.Comment: 5 figures, 5 pages, presented at IEEE International Symposium on Information Theory (ISIT) 201

    Empirical Coordination with Channel Feedback and Strictly Causal or Causal Encoding

    Full text link
    In multi-terminal networks, feedback increases the capacity region and helps communication devices to coordinate. In this article, we deepen the relationship between coordination and feedback by considering a point-to-point scenario with an information source and a noisy channel. Empirical coordination is achievable if the encoder and the decoder can implement sequences of symbols that are jointly typical for a target probability distribution. We investigate the impact of feedback when the encoder has strictly causal or causal observation of the source symbols. For both cases, we characterize the optimal information constraints and we show that feedback improves coordination possibilities. Surprisingly, feedback also reduces the number of auxiliary random variables and simplifies the information constraints. For empirical coordination with strictly causal encoding and feedback, the information constraint does not involve auxiliary random variable anymore.Comment: 5 pages, 6 figures, presented at IEEE International Symposium on Information Theory (ISIT) 201

    Successive Refinement with Decoder Cooperation and its Channel Coding Duals

    Full text link
    We study cooperation in multi terminal source coding models involving successive refinement. Specifically, we study the case of a single encoder and two decoders, where the encoder provides a common description to both the decoders and a private description to only one of the decoders. The decoders cooperate via cribbing, i.e., the decoder with access only to the common description is allowed to observe, in addition, a deterministic function of the reconstruction symbols produced by the other. We characterize the fundamental performance limits in the respective settings of non-causal, strictly-causal and causal cribbing. We use a new coding scheme, referred to as Forward Encoding and Block Markov Decoding, which is a variant of one recently used by Cuff and Zhao for coordination via implicit communication. Finally, we use the insight gained to introduce and solve some dual channel coding scenarios involving Multiple Access Channels with cribbing.Comment: 55 pages, 15 figures, 8 tables, submitted to IEEE Transactions on Information Theory. A shorter version submitted to ISIT 201
    corecore