10,501 research outputs found

    The Bivariate Normal Copula

    Full text link
    We collect well known and less known facts about the bivariate normal distribution and translate them into copula language. In addition, we prove a very general formula for the bivariate normal copula, we compute Gini's gamma, and we provide improved bounds and approximations on the diagonal.Comment: 24 page

    A New Approach To Estimate The Collision Probability For Automotive Applications

    Full text link
    We revisit the computation of probability of collision in the context of automotive collision avoidance (the estimation of a potential collision is also referred to as conflict detection in other contexts). After reviewing existing approaches to the definition and computation of a collision probability we argue that the question "What is the probability of collision within the next three seconds?" can be answered on the basis of a collision probability rate. Using results on level crossings for vector stochastic processes we derive a general expression for the upper bound of the distribution of the collision probability rate. This expression is valid for arbitrary prediction models including process noise. We demonstrate in several examples that distributions obtained by large-scale Monte-Carlo simulations obey this bound and in many cases approximately saturate the bound. We derive an approximation for the distribution of the collision probability rate that can be computed on an embedded platform. In order to efficiently sample this probability rate distribution for determination of its characteristic shape an adaptive method to obtain the sampling points is proposed. An upper bound of the probability of collision is then obtained by one-dimensional numerical integration over the time period of interest. A straightforward application of this method applies to the collision of an extended object with a second point-like object. Using an abstraction of the second object by salient points of its boundary we propose an application of this method to two extended objects with arbitrary orientation. Finally, the distribution of the collision probability rate is identified as the distribution of the time-to-collision.Comment: Revised and restructured version, discussion of extended vehicles expanded, section on TTC expanded, references added, other minor changes, 17 pages, 18 figure

    Fast and Accurate Calculation of Owen's T Function

    Get PDF
    See paper for mathematical introduction.

    Nonlinear spectral analysis: A local Gaussian approach

    Get PDF
    The spectral distribution f(ω)f(\omega) of a stationary time series {Yt}t∈Z\{Y_t\}_{t\in\mathbb{Z}} can be used to investigate whether or not periodic structures are present in {Yt}t∈Z\{Y_t\}_{t\in\mathbb{Z}}, but f(ω)f(\omega) has some limitations due to its dependence on the autocovariances γ(h)\gamma(h). For example, f(ω)f(\omega) can not distinguish white i.i.d. noise from GARCH-type models (whose terms are dependent, but uncorrelated), which implies that f(ω)f(\omega) can be an inadequate tool when {Yt}t∈Z\{Y_t\}_{t\in\mathbb{Z}} contains asymmetries and nonlinear dependencies. Asymmetries between the upper and lower tails of a time series can be investigated by means of the local Gaussian autocorrelations introduced in Tj{\o}stheim and Hufthammer (2013), and these local measures of dependence can be used to construct the local Gaussian spectral density presented in this paper. A key feature of the new local spectral density is that it coincides with f(ω)f(\omega) for Gaussian time series, which implies that it can be used to detect non-Gaussian traits in the time series under investigation. In particular, if f(ω)f(\omega) is flat, then peaks and troughs of the new local spectral density can indicate nonlinear traits, which potentially might discover local periodic phenomena that remain undetected in an ordinary spectral analysis.Comment: Version 4: Major revision from version 3, with new theory/figures. 135 pages (main part 32 + appendices 103), 11 + 16 figure

    Gaussian Process Conditional Copulas with Applications to Financial Time Series

    Full text link
    The estimation of dependencies between multiple variables is a central problem in the analysis of financial time series. A common approach is to express these dependencies in terms of a copula function. Typically the copula function is assumed to be constant but this may be inaccurate when there are covariates that could have a large influence on the dependence structure of the data. To account for this, a Bayesian framework for the estimation of conditional copulas is proposed. In this framework the parameters of a copula are non-linearly related to some arbitrary conditioning variables. We evaluate the ability of our method to predict time-varying dependencies on several equities and currencies and observe consistent performance gains compared to static copula models and other time-varying copula methods

    Particle Efficient Importance Sampling

    Full text link
    The efficient importance sampling (EIS) method is a general principle for the numerical evaluation of high-dimensional integrals that uses the sequential structure of target integrands to build variance minimising importance samplers. Despite a number of successful applications in high dimensions, it is well known that importance sampling strategies are subject to an exponential growth in variance as the dimension of the integration increases. We solve this problem by recognising that the EIS framework has an offline sequential Monte Carlo interpretation. The particle EIS method is based on non-standard resampling weights that take into account the look-ahead construction of the importance sampler. We apply the method for a range of univariate and bivariate stochastic volatility specifications. We also develop a new application of the EIS approach to state space models with Student's t state innovations. Our results show that the particle EIS method strongly outperforms both the standard EIS method and particle filters for likelihood evaluation in high dimensions. Moreover, the ratio between the variances of the particle EIS and particle filter methods remains stable as the time series dimension increases. We illustrate the efficiency of the method for Bayesian inference using the particle marginal Metropolis-Hastings and importance sampling squared algorithms
    • …
    corecore