123 research outputs found

    Uniform and Bernoulli measures on the boundary of trace monoids

    Full text link
    Trace monoids and heaps of pieces appear in various contexts in combinatorics. They also constitute a model used in computer science to describe the executions of asynchronous systems. The design of a natural probabilistic layer on top of the model has been a long standing challenge. The difficulty comes from the presence of commuting pieces and from the absence of a global clock. In this paper, we introduce and study the class of Bernoulli probability measures that we claim to be the simplest adequate probability measures on infinite traces. For this, we strongly rely on the theory of trace combinatorics with the M\"obius polynomial in the key role. These new measures provide a theoretical foundation for the probabilistic study of concurrent systems.Comment: 34 pages, 5 figures, 27 reference

    A cut-invariant law of large numbers for random heaps

    Full text link
    Heap monoids equipped with Bernoulli measures are a model of probabilistic asynchronous systems. We introduce in this framework the notion of asynchronous stopping time, which is analogous to the notion of stopping time for classical probabilistic processes. A Strong Bernoulli property is proved. A notion of cut-invariance is formulated for convergent ergodic means. Then a version of the Strong law of large numbers is proved for heap monoids with Bernoulli measures. Finally, we study a sub-additive version of the Law of large numbers in this framework based on Kingman sub-additive Ergodic Theorem.Comment: 29 pages, 3 figures, 21 reference

    Finite transducers for divisibility monoids

    Get PDF
    Divisibility monoids are a natural lattice-theoretical generalization of Mazurkiewicz trace monoids, namely monoids in which the distributivity of the involved divisibility lattices is kept as an hypothesis, but the relations between the generators are not supposed to necessarily be commutations. Here, we show that every divisibility monoid admits an explicit finite transducer which allows to compute normal forms in quadratic time. In addition, we prove that every divisibility monoid is biautomatic.Comment: 20 page

    Markovian dynamics of concurrent systems

    Full text link
    Monoid actions of trace monoids over finite sets are powerful models of concurrent systems---for instance they encompass the class of 1-safe Petri nets. We characterise Markov measures attached to concurrent systems by finitely many parameters with suitable normalisation conditions. These conditions involve polynomials related to the combinatorics of the monoid and of the monoid action. These parameters generalise to concurrent systems the coefficients of the transition matrix of a Markov chain. A natural problem is the existence of the uniform measure for every concurrent system. We prove this existence under an irreducibility condition. The uniform measure of a concurrent system is characterised by a real number, the characteristic root of the action, and a function of pairs of states, the Parry cocyle. A new combinatorial inversion formula allows to identify a polynomial of which the characteristic root is the smallest positive root. Examples based on simple combinatorial tilings are studied.Comment: 35 pages, 6 figures, 33 reference

    Uniform generation in trace monoids

    Full text link
    We consider the problem of random uniform generation of traces (the elements of a free partially commutative monoid) in light of the uniform measure on the boundary at infinity of the associated monoid. We obtain a product decomposition of the uniform measure at infinity if the trace monoid has several irreducible components-a case where other notions such as Parry measures, are not defined. Random generation algorithms are then examined.Comment: Full version of the paper in MFCS 2015 with the same titl

    A local transform for trace monoids

    Get PDF
    10 pagesWe introduce a transformation for functions defined on the set of cliques of a trace monoid. We prove an inversion formula related to this transformation. It is applied in a probabilistic context in order to obtain a necessary normalization condition for the probabilistic parameters of invariant processes---a class of probabilistic processes introduced elsewhere, and intended to model an asynchronous and memoryless behavior
    corecore