3,673 research outputs found

    On the Computational Complexity of Vertex Integrity and Component Order Connectivity

    Full text link
    The Weighted Vertex Integrity (wVI) problem takes as input an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to\mathbb{N}, and an integer pp. The task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX plus the weight of a heaviest component of GXG-X is at most pp. Among other results, we prove that: (1) wVI is NP-complete on co-comparability graphs, even if each vertex has weight 11; (2) wVI can be solved in O(pp+1n)O(p^{p+1}n) time; (3) wVI admits a kernel with at most p3p^3 vertices. Result (1) refutes a conjecture by Ray and Deogun and answers an open question by Ray et al. It also complements a result by Kratsch et al., stating that the unweighted version of the problem can be solved in polynomial time on co-comparability graphs of bounded dimension, provided that an intersection model of the input graph is given as part of the input. An instance of the Weighted Component Order Connectivity (wCOC) problem consists of an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to \mathbb{N}, and two integers kk and ll, and the task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX is at most kk and the weight of a heaviest component of GXG-X is at most ll. In some sense, the wCOC problem can be seen as a refined version of the wVI problem. We prove, among other results, that: (4) wCOC can be solved in O(min{k,l}n3)O(\min\{k,l\}\cdot n^3) time on interval graphs, while the unweighted version can be solved in O(n2)O(n^2) time on this graph class; (5) wCOC is W[1]-hard on split graphs when parameterized by kk or by ll; (6) wCOC can be solved in 2O(klogl)n2^{O(k\log l)} n time; (7) wCOC admits a kernel with at most kl(k+l)+kkl(k+l)+k vertices. We also show that result (6) is essentially tight by proving that wCOC cannot be solved in 2o(klogl)nO(1)2^{o(k \log l)}n^{O(1)} time, unless the ETH fails.Comment: A preliminary version of this paper already appeared in the conference proceedings of ISAAC 201

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Transport and dynamics on open quantum graphs

    Full text link
    We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs. The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular we consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties of the classical system are revealed in the scattering resonances and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR

    Renormalization: an advanced overview

    Full text link
    We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond standard QFT textbook material, and may be little-known to specialists of each other approach. This review is aimed at bridging this gap.Comment: Review, 130 pages, 33 figures; v2: misprints corrected, refs. added, minor improvements; v3: some changes to sect. 5, refs. adde

    The Transverse-Field Ising Spin Glass Model on the Bethe Lattice with an Application to Adiabatic Quantum Computing

    Get PDF
    In this Ph.D. thesis we examine the Adiabatic Quantum Algorithm from the point of view of statistical and condensed matter physics. We do this by studying the transverse-field Ising spin glass model defined on the Bethe lattice, which is of independent interest to both the physics community and the quantum computation community. Using quantum Monte Carlo methods, we perform an extensive study of the the ground-state properties of the model, including the R\'enyi entanglement entropy, quantum Fisher information, Edwards--Anderson parameter, correlation functions. Through the finite-size scaling of these quantities we find multiple independent and coinciding estimates for the critical point of the glassy phase transition at zero temperature, which completes the phase diagram of the model as was previously known in the literature. We find volumetric bipartite and finite multipartite entanglement for all values of the transverse field considered, both in the paramagnetic and in the glassy phase, and at criticality. We discuss their implication with respect to quantum computing. By writing a perturbative expansion in the large transverse field regime we develop a mean-field quasiparticle theory that explains the numerical data. The emerging picture is that of degenerate bands of localized quasiparticle excitations on top of a vacuum. The perturbative energy corrections to these bands are given by pair creation/annihilation and hopping processes of the quasiparticles on the Bethe lattice. The transition to the glassy phase is explained as a crossing of the energy level of the vacuum with one of the bands, so that creation of quasiparticles becomes energetically favoured. We also study the localization properties of the model by employing the forward scattering approximation of the locator expansion, which we compute using a numerical transfer matrix technique. We obtain a lower bound for the mobility edge of the system. We find a localized region inside of the glassy phase and we discuss the consequences of its presence for the Adiabatic Quantum Algorithm

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Quantum fluctuations around low-dimensional topological defects

    Get PDF
    In these Lectures a method is described to analyze the effect of quantum fluctuations on topological defect backgrounds up to the one-loop level. The method is based on the spectral heat kernel/zeta function regularization procedure, and it is first applied to various types of kinks arising in several deformed linear and non-linear sigma models with different numbers of scalar fields. In the second part, the same conceptual framework is constructed for the topological solitons of the planar semilocal Abelian Higgs model, built from a doublet of complex scalar fields and one U(1) gauge field.Comment: 63 pages, 14 figures, expanded version of two lectures given by J.M.G. in 5th International School on Field Theory and Gravitation, Cuiaba, Brazi
    corecore