24,747 research outputs found

    Some Speed-Ups and Speed Limits for Real Algebraic Geometry

    Get PDF
    We give new positive and negative results (some conditional) on speeding up computational algebraic geometry over the reals: (1) A new and sharper upper bound on the number of connected components of a semialgebraic set. Our bound is novel in that it is stated in terms of the volumes of certain polytopes and, for a large class of inputs, beats the best previous bounds by a factor exponential in the number of variables. (2) A new algorithm for approximating the real roots of certain sparse polynomial systems. Two features of our algorithm are (a) arithmetic complexity polylogarithmic in the degree of the underlying complex variety (as opposed to the super-linear dependence in earlier algorithms) and (b) a simple and efficient generalization to certain univariate exponential sums. (3) Detecting whether a real algebraic surface (given as the common zero set of some input straight-line programs) is not smooth can be done in polynomial time within the classical Turing model (resp. BSS model over C) only if P=NP (resp. NP<=BPP). The last result follows easily from an unpublished result of Steve Smale.Comment: This is the final journal version which will appear in Journal of Complexity. More typos are corrected, and a new section is added where the bounds here are compared to an earlier result of Benedetti, Loeser, and Risler. The LaTeX source needs the ajour.cls macro file to compil

    A complex analogue of Toda's Theorem

    Full text link
    Toda \cite{Toda} proved in 1989 that the (discrete) polynomial time hierarchy, PH\mathbf{PH}, is contained in the class \mathbf{P}^{#\mathbf{P}}, namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class #\mathbf{P}. This result, which illustrates the power of counting is considered to be a seminal result in computational complexity theory. An analogous result (with a compactness hypothesis) in the complexity theory over the reals (in the sense of Blum-Shub-Smale real machines \cite{BSS89}) was proved in \cite{BZ09}. Unlike Toda's proof in the discrete case, which relied on sophisticated combinatorial arguments, the proof in \cite{BZ09} is topological in nature in which the properties of the topological join is used in a fundamental way. However, the constructions used in \cite{BZ09} were semi-algebraic -- they used real inequalities in an essential way and as such do not extend to the complex case. In this paper, we extend the techniques developed in \cite{BZ09} to the complex projective case. A key role is played by the complex join of quasi-projective complex varieties. As a consequence we obtain a complex analogue of Toda's theorem. The results contained in this paper, taken together with those contained in \cite{BZ09}, illustrate the central role of the Poincar\'e polynomial in algorithmic algebraic geometry, as well as, in computational complexity theory over the complex and real numbers -- namely, the ability to compute it efficiently enables one to decide in polynomial time all languages in the (compact) polynomial hierarchy over the appropriate field.Comment: 31 pages. Final version to appear in Foundations of Computational Mathematic

    Exact relaxation for polynomial optimization on semi-algebraic sets

    Get PDF
    In this paper, we study the problem of computing by relaxation hierarchies the infimum of a real polynomial function f on a closed basic semialgebraic set and the points where this infimum is reached, if they exist. We show that when the infimum is reached, a relaxation hierarchy constructed from the Karush-Kuhn-Tucker ideal is always exact and that the vanishing ideal of the KKT minimizer points is generated by the kernel of the associated moment matrix in that degree, even if this ideal is not zero-dimensional. We also show that this relaxation allows to detect when there is no KKT minimizer. We prove that the exactness of the relaxation depends only on the real points which satisfy these constraints.This exploits representations of positive polynomials as elementsof the preordering modulo the KKT ideal, which only involves polynomials in the initial set of variables. Applications to global optimization, optimization on semialgebraic sets defined by regular sets of constraints, optimization on finite semialgebraic sets, real radical computation are given
    corecore