57 research outputs found

    Computing the vertices of tropical polyhedra using directed hypergraphs

    Get PDF
    We establish a characterization of the vertices of a tropical polyhedron defined as the intersection of finitely many half-spaces. We show that a point is a vertex if, and only if, a directed hypergraph, constructed from the subdifferentials of the active constraints at this point, admits a unique strongly connected component that is maximal with respect to the reachability relation (all the other strongly connected components have access to it). This property can be checked in almost linear-time. This allows us to develop a tropical analogue of the classical double description method, which computes a minimal internal representation (in terms of vertices) of a polyhedron defined externally (by half-spaces or hyperplanes). We provide theoretical worst case complexity bounds and report extensive experimental tests performed using the library TPLib, showing that this method outperforms the other existing approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section 5 (using directed hypergraphs), detailed appendix; v3: major revision of the article (adding tropical hyperplanes, alternative method by arrangements, etc); v4: minor revisio

    The tropical double description method

    Get PDF
    We develop a tropical analogue of the classical double description method allowing one to compute an internal representation (in terms of vertices) of a polyhedron defined externally (by inequalities). The heart of the tropical algorithm is a characterization of the extreme points of a polyhedron in terms of a system of constraints which define it. We show that checking the extremality of a point reduces to checking whether there is only one minimal strongly connected component in an hypergraph. The latter problem can be solved in almost linear time, which allows us to eliminate quickly redundant generators. We report extensive tests (including benchmarks from an application to static analysis) showing that the method outperforms experimentally the previous ones by orders of magnitude. The present tools also lead to worst case bounds which improve the ones provided by previous methods.Comment: 12 pages, prepared for the Proceedings of the Symposium on Theoretical Aspects of Computer Science, 2010, Nancy, Franc

    On the complexity of strongly connected components in directed hypergraphs

    Full text link
    We study the complexity of some algorithmic problems on directed hypergraphs and their strongly connected components (SCCs). The main contribution is an almost linear time algorithm computing the terminal strongly connected components (i.e. SCCs which do not reach any components but themselves). "Almost linear" here means that the complexity of the algorithm is linear in the size of the hypergraph up to a factor alpha(n), where alpha is the inverse of Ackermann function, and n is the number of vertices. Our motivation to study this problem arises from a recent application of directed hypergraphs to computational tropical geometry. We also discuss the problem of computing all SCCs. We establish a superlinear lower bound on the size of the transitive reduction of the reachability relation in directed hypergraphs, showing that it is combinatorially more complex than in directed graphs. Besides, we prove a linear time reduction from the well-studied problem of finding all minimal sets among a given family to the problem of computing the SCCs. Only subquadratic time algorithms are known for the former problem. These results strongly suggest that the problem of computing the SCCs is harder in directed hypergraphs than in directed graphs.Comment: v1: 32 pages, 7 figures; v2: revised version, 34 pages, 7 figure

    Minimal external representations of tropical polyhedra

    Get PDF
    Tropical polyhedra are known to be representable externally, as intersections of finitely many tropical half-spaces. However, unlike in the classical case, the extreme rays of their polar cones provide external representations containing in general superfluous half-spaces. In this paper, we prove that any tropical polyhedral cone in R^n (also known as "tropical polytope" in the literature) admits an essentially unique minimal external representation. The result is obtained by establishing a (partial) anti-exchange property of half-spaces. Moreover, we show that the apices of the half-spaces appearing in such non-redundant external representations are vertices of the cell complex associated with the polyhedral cone. We also establish a necessary condition for a vertex of this cell complex to be the apex of a non-redundant half-space. It is shown that this condition is sufficient for a dense class of polyhedral cones having "generic extremities".Comment: v1: 32 pages, 10 figures; v2: minor revision, 34 pages, 10 figure

    Tropical polar cones, hypergraph transversals, and mean payoff games

    Get PDF
    We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar in terms of certain minimal set covers which may be thought of as weighted generalizations of minimal transversals in hypergraphs. We also give a tropical analogue of Farkas lemma, which allows one to check whether a linear inequality is implied by a finite family of linear inequalities. Here, the certificate is a strategy of a mean payoff game. We discuss examples, showing that the number of extreme rays of the polar of the tropical cyclic polyhedral cone is polynomially bounded, and that there is no unique minimal system of inequalities defining a given tropical polyhedral cone.Comment: 27 pages, 6 figures, revised versio

    Tropical analogues of a Dempe-Franke bilevel optimization problem

    Get PDF
    We consider the tropical analogues of a particular bilevel optimization problem studied by Dempe and Franke and suggest some methods of solving these new tropical bilevel optimization problems. In particular, it is found that the algorithm developed by Dempe and Franke can be formulated and its validity can be proved in a more general setting, which includes the tropical bilevel optimization problems in question. We also show how the feasible set can be decomposed into a finite number of tropical polyhedra, to which the tropical linear programming solvers can be applied.Comment: 11 pages, 1 figur
    corecore