4,768 research outputs found

    Computing the Stereo Matching Cost with a Convolutional Neural Network

    Full text link
    We present a method for extracting depth information from a rectified image pair. We train a convolutional neural network to predict how well two image patches match and use it to compute the stereo matching cost. The cost is refined by cross-based cost aggregation and semiglobal matching, followed by a left-right consistency check to eliminate errors in the occluded regions. Our stereo method achieves an error rate of 2.61 % on the KITTI stereo dataset and is currently (August 2014) the top performing method on this dataset.Comment: Conference on Computer Vision and Pattern Recognition (CVPR), June 201

    Anytime Stereo Image Depth Estimation on Mobile Devices

    Full text link
    Many applications of stereo depth estimation in robotics require the generation of accurate disparity maps in real time under significant computational constraints. Current state-of-the-art algorithms force a choice between either generating accurate mappings at a slow pace, or quickly generating inaccurate ones, and additionally these methods typically require far too many parameters to be usable on power- or memory-constrained devices. Motivated by these shortcomings, we propose a novel approach for disparity prediction in the anytime setting. In contrast to prior work, our end-to-end learned approach can trade off computation and accuracy at inference time. Depth estimation is performed in stages, during which the model can be queried at any time to output its current best estimate. Our final model can process 1242× \times 375 resolution images within a range of 10-35 FPS on an NVIDIA Jetson TX2 module with only marginal increases in error -- using two orders of magnitude fewer parameters than the most competitive baseline. The source code is available at https://github.com/mileyan/AnyNet .Comment: Accepted by ICRA201
    corecore