49,349 research outputs found

    Pants Decomposition of the Punctured Plane

    Full text link
    A pants decomposition of an orientable surface S is a collection of simple cycles that partition S into pants, i.e., surfaces of genus zero with three boundary cycles. Given a set P of n points in the plane, we consider the problem of computing a pants decomposition of the surface S which is the plane minus P, of minimum total length. We give a polynomial-time approximation scheme using Mitchell's guillotine rectilinear subdivisions. We give a quartic-time algorithm to compute the shortest pants decomposition of S when the cycles are restricted to be axis-aligned boxes, and a quadratic-time algorithm when all the points lie on a line; both exact algorithms use dynamic programming with Yao's speedup.Comment: 5 pages, 1 grayscale figur

    Quantifying Homology Classes

    Get PDF
    We develop a method for measuring homology classes. This involves three problems. First, we define the size of a homology class, using ideas from relative homology. Second, we define an optimal basis of a homology group to be the basis whose elements' size have the minimal sum. We provide a greedy algorithm to compute the optimal basis and measure classes in it. The algorithm runs in O(β4n3log2n)O(\beta^4 n^3 \log^2 n) time, where nn is the size of the simplicial complex and β\beta is the Betti number of the homology group. Third, we discuss different ways of localizing homology classes and prove some hardness results

    Computing Optimal Morse Matchings

    Full text link
    Morse matchings capture the essential structural information of discrete Morse functions. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present polyhedral results for the corresponding polytope and report on computational results

    On Computing the Translations Norm in the Epipolar Graph

    Full text link
    This paper deals with the problem of recovering the unknown norm of relative translations between cameras based on the knowledge of relative rotations and translation directions. We provide theoretical conditions for the solvability of such a problem, and we propose a two-stage method to solve it. First, a cycle basis for the epipolar graph is computed, then all the scaling factors are recovered simultaneously by solving a homogeneous linear system. We demonstrate the accuracy of our solution by means of synthetic and real experiments.Comment: Accepted at 3DV 201
    corecore