151 research outputs found

    Computing the Parallelism Degree of Timed BPMN Processes

    Get PDF
    International audienceA business process is a combination of structured and related activities that aim at fulfilling a specific organizational goal for a customer or market. An important measure when developing a business process is the degree of parallelism, namely, the maximum number of tasks that are executable in parallel at any given time in a process. This measure determines the peak demand on tasks and thus can provide valuable insight on the problem of resource allocation in business processes. This paper considers timed business processes modeled in BPMN, a workflow-based graphical notation for processes, where execution times can be associated to several BPMN constructs such as tasks and flows. An encoding of timed business processes into Maude's rewriting logic system is presented, enabling the automatic computation of timed degrees of parallelism for business processes. The approach is illustrated with a simple yet realistic case study in which the degree of parallelism is used to improve the business process design with the ultimate goal of optimizing resources and, therefore, with the potential for reducing operating costs

    Formalization of BPMN Gateways using the DD-LOTOS Formal Language

    Get PDF
    Business Process Model and Notation (BPMN), is a standardized graphical language used for the graphical modeling of business processes. A BPMN model is composed of several small graphs called elements; these elements make it possible to describe the activities, the events, and the interactions between the components of a business process. Among the essential elements of BPMN are gateways, which control the flow of data. However, the big challenge of these gateways is the existence of several interpretations of the same BPMN model containing gateways; this is due to the informal and ambiguous definition. Several works have proposed the formalization of gateways using formal languages such as process algebras, Petri nets, etc. The purpose of this article is to propose a formalization of BPMN gateways using the formal language DD-LOTOS. DDLOTOS is defined on a semantics of true parallelism called maximality semantics and allows to support distribution and temporal constraints. We then propose the verification of certain properties using the UPPAAL model checker. Our approach has been validated through a case study representing the online purchasing process

    Basic completion strategies as another application of the Maude strategy language

    Full text link
    The two levels of data and actions on those data provided by the separation between equations and rules in rewriting logic are completed by a third level of strategies to control the application of those actions. This level is implemented on top of Maude as a strategy language, which has been successfully used in a wide range of applications. First we summarize the Maude strategy language design and review some of its applications; then, we describe a new case study, namely the description of completion procedures as transition rules + control, as proposed by Lescanne.Comment: In Proceedings WRS 2011, arXiv:1204.531

    A compensating transaction example in twelve notations

    Get PDF
    The scenario of business computer systems changed with the advent of cross-entity computer interactions: computer systems no longer had the limited role of storing and processing data, but became themselves the players which actuated real-life actions. These advancements rendered the traditional transaction mechanism insufficient to deal with these new complexities of longer multi-party transactions. The concept of compensations has long been suggested as a solution, providing the possibility of executing “counter”-actions which semantically undo previously completed actions in case a transaction fails. There are numerous design options related to compensations particularly when deciding the strategy of ordering compensating actions. Along the years, various models which include compensations have emerged, each tackling in its own way these options. In this work, we review a number of notations which handle compensations by going through their syntax and semantics — highlighting the distinguishing features — and encoding a typical compensating transaction example in terms of each of these notations.peer-reviewe

    Patterns-based Evaluation of Open Source BPM Systems: The Cases of jBPM, OpenWFE, and Enhydra Shark

    Get PDF
    In keeping with the proliferation of free software development initiatives and the increased interest in the business process management domain, many open source workflow and business process management systems have appeared during the last few years and are now under active development. This upsurge gives rise to two important questions: what are the capabilities of these systems? and how do they compare to each other and to their closed source counterparts? i.e. in other words what is the state-of-the-art in the area?. To gain an insight into the area, we have conducted an in-depth analysis of three of the major open source workflow management systems - jBPM, OpenWFE and Enhydra Shark, the results of which are reported here. This analysis is based on the workflow patterns framework and provides a continuation of the series of evaluations performed using the same framework on closed source systems, business process modeling languages and web-service composition standards. The results from evaluations of the three open source systems are compared with each other and also with the results from evaluations of three representative closed source systems - Staffware, WebSphere MQ and Oracle BPEL PM, documented in earlier works. The overall conclusion is that open source systems are targeted more toward developers rather than business analysts. They generally provide less support for the patterns than closed source systems, particularly with respect to the resource perspective which describes the various ways in which work is distributed amongst business users and managed through to completion

    Checking Business Process Evolution

    Get PDF
    International audienceBusiness processes support the modeling and the implementation of software as workflows of local and inter-process activities. Taking over structuring and composition, evolution has become a central concern in software development. We advocate it should be taken into account as soon as the modeling of business processes, which can thereafter be made executable using process engines or model-to-code transformations. We show here that business process evolution needs formal analysis in order to compare different versions of processes, identify precisely the differences between them, and ensure the desired consistency. To reach this objective, we first present a model transformation from the BPMN standard notation to the LNT process algebra. We then propose a set of relations for comparing business processes at the formal model level. With reference to related work, we propose a richer set of comparison primitives supporting renaming, refinement, property- and context-awareness. Thanks to an implementation of our approach that can be used through a Web application, we put the checking of evolution within the reach of business process designers

    A Benchmark for ASP Systems: Resource Allocation in Business Processes

    Get PDF
    The goal of this paper is to benchmark Answer Set Programming (ASP) systems to test their performance when dealing with a complex optimization problem. In particular, the problem tackled is resource allocation in the area of Business Process Management (BPM). Like many other scheduling problems, the allocation of resources and starting times to business process activities is a challenging optimization problem for ASP solvers. Our problem encoding is ASP Core-2 standard compliant and it is realized in a declarative and compact fashion. We develop an instance generator that produces problem instances of different size and hardness with respect to adjustable parameters. By using the baseline encoding and the instance generator, we provide a comparison between the two award-winning ASP solvers clasp and wasp and report the grounding performance of gringo and i-dlv. The benchmark suggests that there is room for improvement concerning both the grounders and the solvers. Fostered by the relevance of the problem addressed, of which several variants have been described in different domains, we believe this is a solid application-oriented benchmark for the ASP community.Series: Working Papers on Information Systems, Information Business and Operation

    A Benchmark for ASP Systems: Resource Allocation in Business Processes

    Get PDF
    The goal of this paper is to benchmark Answer Set Programming (ASP) systems to test their performance when dealing with a complex optimization problem. In particular, the problem tackled is resource allocation in the area of Business Process Management (BPM). Like many other scheduling problems, the allocation of resources and starting times to business process activities is a challenging optimization problem for ASP solvers. Our problem encoding is ASP Core-2 standard compliant and it is realized in a declarative and compact fashion. We develop an instance generator that produces problem instances of different size and hardness with respect to adjustable parameters. By using the baseline encoding and the instance generator, we provide a comparison between the two award-winning ASP solvers CLASP and WASP and report the grounding performance of GRINGO and I-DLV. The benchmark suggests that there is room for improvement concerning both the grounders and the solvers. Fostered by the relevance of the problem addressed, of which several variants have been described in different domains, we believe this is a solid application-oriented benchmark for the ASP community.Austrian Research Promotion Agency (FFG) 845638 (SHAPE

    Propagating Changes between Declarative and Procedural Process Models

    Get PDF
    Debatt protseduuriliste ja deklaratiivsete keelte eeliste ja puuduste üle erinevate kasutusjuhtude korral on olnud tuline. Protseduurilised keeled on sobivamad operatiivsete protsesside modelleerimiseks, deklaratiivsed keeli kasutatakse regulatsioonide/juhiste jaoks. Ometi tekib olukordi, kus on mõistlik kombineerida neid keeli, et saavutada parem tulemus. Selle asemel, et sundida modelleerijaid õppima uusi hübriidkeeli, peame me paremaks kahe spetsifikatsiooni eraldi hoidmist ja pakume välja viisi, kuidas protseduurilist mudelit automaatselt muuta nii, et see oleks kooskõlas deklaratiivsete reeglitega. Nõudlus sellise lahenduse jaoks tekib, näiteks kui organisatsioon peab muutma protsesse vastavalt muutuvatele välistele reeglitele. Üldiselt on nii võimalik ära kasutada deklaratiivsete keelte paindlikust ja hoida kõrgetasemelist tuge, mida pakuvad protseduurilised keeled. Lisaks, võrreldes originaalset ja parandatud mudelit, on võimalik selgelt näha reeglite mõju. Käesolevas lõputöös sõnastame me antud probleemi, loome teoreetilise vundamendi ja pakume välja olekumasinatel põhineva lahenduse, mida me võrdleme olemasolevate lahendustega mudelite parandamiseks ja protsesside avastamiseks.The debate on advantages and disadvantages of declarative versus procedural process modelling languages for different usage scenarios has been intense. Procedural languages are more suited for describing operational processes while declarative ones for expressing regulations/guidelines, and in many situations the need of combining the benefits of the two rises. Instead of forcing modellers to use a hybrid language, we envisage to keep the two specifications separate and propose a technique that automatically adapts procedural models so as to comply with sets of declarative rules. This not only fits scenarios where, e.g., company processes have to be modified according to changing external rules, but, more in general, it presents a way to take advantage of the flexibility of declarative while maintaining the high level of support provided by procedural languages. Furthermore, by comparing the original and the resulting procedural models, the impact of rules is clearly exposed. In this thesis, we frame the problem above by providing its theoretical characterisation and propose an automata-based solution, which is then evaluated against approaches leveraging state-of-the-art techniques for process discovery and model repair
    corecore