95 research outputs found

    Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA

    Full text link
    [EN] Despite the widespread use of the classical bicriteria Markowitz mean-variance framework, a broad consensus is emerging on the need to include more criteria for complex portfolio selection problems. Sustainable investing, also called socially responsible investment, is becoming a mainstream investment practice. In recent years, some scholars have attempted to include sustainability as a third criterion to better reflect the individual preferences of those ethical or green investors who are willing to combine strong financial performance with social benefits. For this purpose, new computational methods for optimizing this complex multiobjective problem are needed. Multiobjective evolutionary algorithms (MOEAs) have been recently used for portfolio selection, thus extending the mean-variance methodology to obtain a mean-variance-sustainability nondominated surface. In this paper, we apply a recent multiobjective genetic algorithm based on the concept of epsilon-dominance called ev-MOGA. This algorithm tries to ensure convergence towards the Pareto set in a smart distributed manner with limited memory resources. It also adjusts the limits of the Pareto front dynamically and prevents solutions belonging to the ends of the front from being lost. Moreover, the individual preferences of socially responsible investors could be visualised using a novel tool, known as level diagrams, which helps investors better understand the range of values attainable and the tradeoff between return, risk, and sustainability.This work was funded by "Ministerio de Economia y Competitividad" (Spain), research project RTI2018-096904B-I00, and "Conselleria de Educacion, Cultura y DeporteGeneralitat Valenciana" (Spain), research project AICO/2019/055Garcia-Bernabeu, A.; Salcedo-Romero-De-Ávila, J.; Hilario Caballero, A.; Pla Santamaría, D.; Herrero Durá, JM. (2019). Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA. Complexity. 2019:1-12. https://doi.org/10.1155/2019/6095712S1122019Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77. doi:10.2307/2975974Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M., & Qi, Y. (2013). Computing the Nondominated Surface in Tri-Criterion Portfolio Selection. Operations Research, 61(1), 169-183. doi:10.1287/opre.1120.1140Utz, S., Wimmer, M., Hirschberger, M., & Steuer, R. E. (2014). Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2), 491-498. doi:10.1016/j.ejor.2013.07.024Utz, S., Wimmer, M., & Steuer, R. E. (2015). Tri-criterion modeling for constructing more-sustainable mutual funds. European Journal of Operational Research, 246(1), 331-338. doi:10.1016/j.ejor.2015.04.035Qi, Y., Steuer, R. E., & Wimmer, M. (2015). An analytical derivation of the efficient surface in portfolio selection with three criteria. Annals of Operations Research, 251(1-2), 161-177. doi:10.1007/s10479-015-1900-yGasser, S. M., Rammerstorfer, M., & Weinmayer, K. (2017). Markowitz revisited: Social portfolio engineering. European Journal of Operational Research, 258(3), 1181-1190. doi:10.1016/j.ejor.2016.10.043Qi, Y. (2018). On outperforming social-screening-indexing by multiple-objective portfolio selection. Annals of Operations Research, 267(1-2), 493-513. doi:10.1007/s10479-018-2921-0Nathaphan, S., & Chunhachinda, P. (2010). Estimation Risk Modeling in Optimal Portfolio Selection: An Empirical Study from Emerging Markets. Economics Research International, 2010, 1-10. doi:10.1155/2010/340181DeMiguel, V., Garlappi, L., & Uppal, R. (2007). Optimal Versus Naive Diversification: How Inefficient is the 1/NPortfolio Strategy? Review of Financial Studies, 22(5), 1915-1953. doi:10.1093/rfs/hhm075Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685-11698. doi:10.1016/j.eswa.2012.04.053Bertsimas, D., & Shioda, R. (2007). Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications, 43(1), 1-22. doi:10.1007/s10589-007-9126-9Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030Chen, B., Lin, Y., Zeng, W., Xu, H., & Zhang, D. (2017). The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm. Applied Intelligence, 47(2), 505-525. doi:10.1007/s10489-017-0898-zLiagkouras, K. (2019). A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem. Knowledge-Based Systems, 163, 186-203. doi:10.1016/j.knosys.2018.08.025Kaucic, M., Moradi, M., & Mirzazadeh, M. (2019). Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures. Financial Innovation, 5(1). doi:10.1186/s40854-019-0140-6Silva, Y. L. T. V., Herthel, A. B., & Subramanian, A. (2019). A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Systems with Applications, 133, 225-241. doi:10.1016/j.eswa.2019.05.018Anagnostopoulos, K. P., & Mamanis, G. (2009). Multiobjective evolutionary algorithms for complex portfolio optimization problems. Computational Management Science, 8(3), 259-279. doi:10.1007/s10287-009-0113-8Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155(3), 752-770. doi:10.1016/s0377-2217(02)00881-0Steuer, R. E., Qi, Y., & Hirschberger, M. (2006). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152(1), 297-317. doi:10.1007/s10479-006-0137-1Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7), 1285-1297. doi:10.1016/j.cor.2009.09.009Hallerbach, W. (2004). A framework for managing a portfolio of socially responsible investments. European Journal of Operational Research, 153(2), 517-529. doi:10.1016/s0377-2217(03)00172-3Ballestero, E., Bravo, M., Pérez-Gladish, B., Arenas-Parra, M., & Plà-Santamaria, D. (2012). Socially Responsible Investment: A multicriteria approach to portfolio selection combining ethical and financial objectives. European Journal of Operational Research, 216(2), 487-494. doi:10.1016/j.ejor.2011.07.011Cabello, J. M., Ruiz, F., Pérez-Gladish, B., & Méndez-Rodríguez, P. (2014). Synthetic indicators of mutual funds’ environmental responsibility: An application of the Reference Point Method. European Journal of Operational Research, 236(1), 313-325. doi:10.1016/j.ejor.2013.11.031Calvo, C., Ivorra, C., & Liern, V. (2014). Fuzzy portfolio selection with non-financial goals: exploring the efficient frontier. Annals of Operations Research, 245(1-2), 31-46. doi:10.1007/s10479-014-1561-2Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.01

    Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach

    Full text link
    [EN] Sustainable finance, which integrates environmental, social and governance criteria on financial decisions rests on the fact that money should be used for good purposes. Thus, the financial sector is also expected to play a more important role to decarbonise the global economy. To align financial flows with a pathway towards a low-carbon economy, investors should be able to integrate into their financial decisions additional criteria beyond return and risk to manage climate risk. We propose a tri-criterion portfolio selection model to extend the classical Markowitz's mean-variance approach to include investor's preferences on the portfolio carbon risk exposure as an additional criterion. To approximate the 3D Pareto front we apply an efficient multi-objective genetic algorithm called ev-MOGA which is based on the concept of epsilon-dominance. Furthermore, we introduce a-posteriori approach to incorporate the investor's preferences into the solution process regarding their climate-change related preferences measured by the carbon risk exposure and their loss-adverse attitude. We test the performance of the proposed algorithm in a cross-section of European socially responsible investments open-end funds to assess the extent to which climate-related risk could be embedded in the portfolio according to the investor's preferences.Hilario Caballero, A.; Garcia-Bernabeu, A.; Salcedo-Romero-De-Ávila, J.; Vercher, M. (2020). Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach. International Journal of Environmental research and Public Health. 17(17):1-15. https://doi.org/10.3390/ijerph17176324S1151717Morningstar Low Carbon Designationhttps://bit.ly/2SfAFUAKrueger, P., Sautner, Z., & Starks, L. T. (2020). The Importance of Climate Risks for Institutional Investors. The Review of Financial Studies, 33(3), 1067-1111. doi:10.1093/rfs/hhz137Syam, S. S. (1998). A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals. European Journal of Operational Research, 108(1), 196-207. doi:10.1016/s0377-2217(97)00048-9Li, D., Sun, X., & Wang, J. (2006). OPTIMAL LOT SOLUTION TO CARDINALITY CONSTRAINED MEAN-VARIANCE FORMULATION FOR PORTFOLIO SELECTION. Mathematical Finance, 16(1), 83-101. doi:10.1111/j.1467-9965.2006.00262.xBertsimas, D., & Shioda, R. (2007). Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications, 43(1), 1-22. doi:10.1007/s10589-007-9126-9Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95-121. doi:10.1016/0304-405x(75)90025-2Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. doi:10.1016/s0378-4266(02)00271-6Mansini, R. (2003). LP solvable models for portfolio optimization: a classification and computational comparison. IMA Journal of Management Mathematics, 14(3), 187-220. doi:10.1093/imaman/14.3.187Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M., & Qi, Y. (2013). Computing the Nondominated Surface in Tri-Criterion Portfolio Selection. Operations Research, 61(1), 169-183. doi:10.1287/opre.1120.1140Utz, S., Wimmer, M., Hirschberger, M., & Steuer, R. E. (2014). Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2), 491-498. doi:10.1016/j.ejor.2013.07.024Utz, S., Wimmer, M., & Steuer, R. E. (2015). Tri-criterion modeling for constructing more-sustainable mutual funds. European Journal of Operational Research, 246(1), 331-338. doi:10.1016/j.ejor.2015.04.035Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. doi:10.1016/s0305-0548(99)00074-xMaringer, D., & Kellerer, H. (2003). Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR Spectrum, 25(4), 481-495. doi:10.1007/s00291-003-0139-1Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optimization Methods and Software, 23(3), 411-420. doi:10.1080/10556780701722542Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3), 5058-5063. doi:10.1016/j.eswa.2008.06.007Anagnostopoulos, K. P., & Mamanis, G. (2011). The mean–variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert Systems with Applications. doi:10.1016/j.eswa.2011.04.233Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030Meghwani, S. S., & Thakur, M. (2017). Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm and Evolutionary Computation, 37, 104-125. doi:10.1016/j.swevo.2017.06.005Liagkouras, K., & Metaxiotis, K. (2016). A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem. Annals of Operations Research, 267(1-2), 281-319. doi:10.1007/s10479-016-2377-zMetaxiotis, K., & Liagkouras, K. (2012). Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685-11698. doi:10.1016/j.eswa.2012.04.053Silva, Y. L. T. V., Herthel, A. B., & Subramanian, A. (2019). A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Systems with Applications, 133, 225-241. doi:10.1016/j.eswa.2019.05.018Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062Liagkouras, K. (2019). A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem. Knowledge-Based Systems, 163, 186-203. doi:10.1016/j.knosys.2018.08.025Kaucic, M., Moradi, M., & Mirzazadeh, M. (2019). Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures. Financial Innovation, 5(1). doi:10.1186/s40854-019-0140-6Babaei, S., Sepehri, M. M., & Babaei, E. (2015). Multi-objective portfolio optimization considering the dependence structure of asset returns. European Journal of Operational Research, 244(2), 525-539. doi:10.1016/j.ejor.2015.01.025Ruiz, A. B., Saborido, R., Bermúdez, J. D., Luque, M., & Vercher, E. (2019). Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences. Journal of Global Optimization, 76(2), 295-315. doi:10.1007/s10898-019-00782-1Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7), 1285-1297. doi:10.1016/j.cor.2009.09.009Hu, Y., Chen, H., He, M., Sun, L., Liu, R., & Shen, H. (2019). Multi-Swarm Multi-Objective Optimizer Based on p-Optimality Criteria for Multi-Objective Portfolio Management. Mathematical Problems in Engineering, 2019, 1-22. doi:10.1155/2019/8418369Rangel-González, J. A., Fraire, H., Solís, J. F., Cruz-Reyes, L., Gomez-Santillan, C., Rangel-Valdez, N., & Carpio-Valadez, J. M. (2020). Fuzzy Multi-objective Particle Swarm Optimization Solving the Three-Objective Portfolio Optimization Problem. International Journal of Fuzzy Systems, 22(8), 2760-2768. doi:10.1007/s40815-020-00928-4Garcia-Bernabeu, A., Salcedo, J. V., Hilario, A., Pla-Santamaria, D., & Herrero, J. M. (2019). Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA. Complexity, 2019, 1-12. doi:10.1155/2019/6095712Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108Matlab Central: ev-MOGA Multiobjective Evolutionary Algorithmhttps://bit.ly/3f2BYQMBlasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.01

    A Multi-Criteria Portfolio Analysis of Hedge Fund Strategies

    Get PDF
    This paper features a tri-criteria analysis of Eurekahedge fund data strategy index data. We use nine Eurekahedge equally weighted main strategy indices for the portfolio analysis. The tri-criteria analysis features three objectives: return, risk and dispersion of risk objectives in a Multi-Criteria Optimisation (MCO) portfolio analysis. We vary the MCO return and risk targets and contrast the results with four more standard portfolio optimisation criteria, namely the tangency portfolio (MSR), the most diversi_ed portfolio (MDP), the global minimum variance portfolio (GMW), and portfolios based on minimising expected shortfall (ERC). Backtests of the chosen portfolios for this hedge fund data set indicate that the use of MCO is accompanied by uncertainty about the a priori choice of optimal parameter settings for the decision criteria. The empirical results do not appear to outperform more standard bi-criteria portfolio analyses in the backtests undertaken on our hedge fund index data

    Stability Analysis in Multicriteria Discrete Portfolio Optimization.

    Get PDF
    Almost every problem of design, planning and management in the technical and organizational systems has several conflicting goals or interests. Nowadays, multicriteria decision models represent a rapidly developing area of operation research. While solving practical optimization problems, it is necessary to take into account various kinds of uncertainty due to lack of data, inadequacy of mathematical models to real-time processes, calculation errors, etc. In practice, this uncertainty usually leads to undesirable outcomes where the solutions are very sensitive to any changes in the input parameters. An example is the investment managing. Stability analysis of multicriteria discrete optimization problems investigates how the found solutions behave in response to changes in the initial data (input parameters). This thesis is devoted to the stability analysis in the problem of selecting investment project portfolios, which are optimized by considering different types of risk and efficiency of the investment projects. The stability analysis is carried out in two approaches: qualitative and quantitative. The qualitative approach describes the behavior of solutions in conditions with small perturbations in the initial data. The stability of solutions is defined in terms of existence a neighborhood in the initial data space. Any perturbed problem from this neighborhood has stability with respect to the set of efficient solutions of the initial problem. The other approach in the stability analysis studies quantitative measures such as stability radius. This approach gives information about the limits of perturbations in the input parameters, which do not lead to changes in the set of efficient solutions. In present thesis several results were obtained including attainable bounds for the stability radii of Pareto optimal and lexicographically optimal portfolios of the investment problem with Savage's, Wald's criteria and criteria of extreme optimism. In addition, special classes of the problem when the stability radii are expressed by the formulae were indicated. Investigations were completed using different combinations of Chebyshev's, Manhattan and Hölder's metrics, which allowed monitoring input parameters perturbations differently.Siirretty Doriast

    A Multi-Criteria Financial and Energy Portfolio Analysis of Hedge Fund Strategies

    Get PDF
    The paper is concerned with a multi-criteria portfolio analysis of hedge fund strategies that are concerned with financial commodities, including the possibility of energy spot, futures and exchange traded funds (ETF). It features a tri-criteria analysis of the Eurekahedge fund data strategy index data. We use nine Eurekahedge equally weighted main strategy indices for the portfolio analysis. The tri-criteria analysis features three objectives: return, risk and dispersion of risk objectives in a Multi-Criteria Optimisation (MCO) portfolio analysis. We vary the MCO return and risk targets, and contrast the results with four more standard portfolio optimisation criteria, namely tangency portfolio (MSR), most diversified portfolio (MDP), global minimum variance portfolio (GMW), and portfolios based on minimising expected shortfall (ERC). Backtests of the chosen portfolios for this hedge fund data set indicate that the use of MCO is accompanied by uncertainty about the a priori choice of optimal parameter settings for the decision criteria. The empirical results do not appear to outperform more standard bi-criteria portfolio analyses in the backtests undertaken on the hedge fund index data

    A Multi-Criteria Financial and Energy Portfolio Analysis of Hedge Fund Strategies

    Get PDF
    The paper is concerned with a multi-criteria portfolio analysis of hedge fund strategies that are concerned with financial commodities, including the possibility of energy spot, futures and exchange traded funds (ETF). It features a tri-criteria analysis of the Eurekahedge fund data strategy index data. We use nine Eurekahedge equally weighted main strategy indices for the portfolio analysis. The tri-criteria analysis features three objectives: return, risk and dispersion of risk objectives in a Multi-Criteria Optimisation (MCO) portfolio analysis. We vary the MCO return and risk targets, and contrast the results with four more standard portfolio optimisation criteria, namely tangency portfolio (MSR), most diversified portfolio (MDP), global minimum variance portfolio (GMW), and portfolios based on minimising expected shortfall (ERC). Backtests of the chosen portfolios for this hedge fund data set indicate that the use of MCO is accompanied by uncertainty about the a priori choice of optimal parameter settings for the decision criteria. The empirical results do not appear to outperform more standard bi-criteria portfolio analyses in the backtests undertaken on the hedge fund index data

    An Algorithm for Biobjective Mixed Integer Quadratic Programs

    Get PDF
    Multiobjective quadratic programs (MOQPs) are appealing since convex quadratic programs have elegant mathematical properties and model important applications. Adding mixed-integer variables extends their applicability while the resulting programs become global optimization problems. Thus, in this work, we develop a branch and bound (BB) algorithm for solving biobjective mixed-integer quadratic programs (BOMIQPs). An algorithm of this type does not exist in the literature. The algorithm relies on five fundamental components of the BB scheme: calculating an initial set of efficient solutions with associated Pareto points, solving node problems, fathoming, branching, and set dominance. Considering the properties of the Pareto set of BOMIQPs, two new fathoming rules are proposed. An extended branching module is suggested to cooperate with the node problem solver. A procedure to make the dominance decision between two Pareto sets with limited information is proposed. This set dominance procedure can eliminate the dominated points and eventually produce the Pareto set of the BOMIQP. Numerical examples are provided. Solving multiobjective quadratic programs (MOQPs) is fundamental to our research. Therefore, we examine the algorithms for this class of problems with different perspectives. The scalarization techniques for (strictly) convex MOPs are reviewed and the available algorithms for computing efficient solutions for MOQPs are discussed. These algorithms are compared with respect to four properties of MOQPs. In addition, methods for solving parametric multiobjective quadratic programs are studied. Computational studies are provided with synthetic instances, and examples in statistics and portfolio optimization. The real-life context reveals the interplay between the scalarizations and provides an additional insight into the obtained parametric solution sets
    corecore