1,939 research outputs found

    Extracting 3D parametric curves from 2D images of Helical objects

    Get PDF
    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively

    Component-wise modeling of articulated objects

    Get PDF
    We introduce a novel framework for modeling articulated objects based on the aspects of their components. By decomposing the object into components, we divide the problem in smaller modeling tasks. After obtaining 3D models for each component aspect by employing a shape deformation paradigm, we merge them together, forming the object components. The final model is obtained by assembling the components using an optimization scheme which fits the respective 3D models to the corresponding apparent contours in a reference pose. The results suggest that our approach can produce realistic 3D models of articulated objects in reasonable time

    Subdivision surface fitting to a dense mesh using ridges and umbilics

    Get PDF
    Fitting a sparse surface to approximate vast dense data is of interest for many applications: reverse engineering, recognition and compression, etc. The present work provides an approach to fit a Loop subdivision surface to a dense triangular mesh of arbitrary topology, whilst preserving and aligning the original features. The natural ridge-joined connectivity of umbilics and ridge-crossings is used as the connectivity of the control mesh for subdivision, so that the edges follow salient features on the surface. Furthermore, the chosen features and connectivity characterise the overall shape of the original mesh, since ridges capture extreme principal curvatures and ridges start and end at umbilics. A metric of Hausdorff distance including curvature vectors is proposed and implemented in a distance transform algorithm to construct the connectivity. Ridge-colour matching is introduced as a criterion for edge flipping to improve feature alignment. Several examples are provided to demonstrate the feature-preserving capability of the proposed approach

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable

    The Universe from Scratch

    Full text link
    A fascinating and deep question about nature is what one would see if one could probe space and time at smaller and smaller distances. Already the 19th-century founders of modern geometry contemplated the possibility that a piece of empty space that looks completely smooth and structureless to the naked eye might have an intricate microstructure at a much smaller scale. Our vastly increased understanding of the physical world acquired during the 20th century has made this a certainty. The laws of quantum theory tell us that looking at spacetime at ever smaller scales requires ever larger energies, and, according to Einstein's theory of general relativity, this will alter spacetime itself: it will acquire structure in the form of "curvature". What we still lack is a definitive Theory of Quantum Gravity to give us a detailed and quantitative description of the highly curved and quantum-fluctuating geometry of spacetime at this so-called Planck scale. - This article outlines a particular approach to constructing such a theory, that of Causal Dynamical Triangulations, and its achievements so far in deriving from first principles why spacetime is what it is, from the tiniest realms of the quantum to the large-scale structure of the universe.Comment: 31 pages, 5 figures; review paper commissioned by Contemporary Physics and aimed at a wider physics audience; minor beautifications, coincides with journal versio

    High Quality Consistent Digital Curved Rays via Vector Field Rounding

    Get PDF
    We consider the consistent digital rays (CDR) of curved rays, which approximates a set of curved rays emanating from the origin by the set of rooted paths (called digital rays) of a spanning tree of a grid graph. Previously, a construction algorithm of CDR for diffused families of curved rays to attain an O(?{n log n}) bound for the distance between digital ray and the corresponding ray is known [Chun et al., 2019]. In this paper, we give a description of the problem as a rounding problem of the vector field generated from the ray family, and investigate the relation of the quality of CDR and the discrepancy of the range space generated from gradient curves of rays. Consequently, we show the existence of a CDR with an O(log ^{1.5} n) distance bound for any diffused family of curved rays
    • …
    corecore