1,170 research outputs found

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    Triangles and Girth in Disk Graphs and Transmission Graphs

    Get PDF
    Let S subset R^2 be a set of n sites, where each s in S has an associated radius r_s > 0. The disk graph D(S) is the undirected graph with vertex set S and an undirected edge between two sites s, t in S if and only if |st| <= r_s + r_t, i.e., if the disks with centers s and t and respective radii r_s and r_t intersect. Disk graphs are used to model sensor networks. Similarly, the transmission graph T(S) is the directed graph with vertex set S and a directed edge from a site s to a site t if and only if |st| <= r_s, i.e., if t lies in the disk with center s and radius r_s. We provide algorithms for detecting (directed) triangles and, more generally, computing the length of a shortest cycle (the girth) in D(S) and in T(S). These problems are notoriously hard in general, but better solutions exist for special graph classes such as planar graphs. We obtain similarly efficient results for disk graphs and for transmission graphs. More precisely, we show that a shortest (Euclidean) triangle in D(S) and in T(S) can be found in O(n log n) expected time, and that the (weighted) girth of D(S) can be found in O(n log n) expected time. For this, we develop new tools for batched range searching that may be of independent interest

    Efficient Computation of the Kauffman Bracket

    Full text link
    This paper bounds the computational cost of computing the Kauffman bracket of a link in terms of the crossing number of that link. Specifically, it is shown that the image of a tangle with gg boundary points and nn crossings in the Kauffman bracket skein module is a linear combination of O(2g)O(2^g) basis elements, with each coefficient a polynomial with at most nn nonzero terms, each with integer coefficients, and that the link can be built one crossing at a time as a sequence of tangles with maximum number of boundary points bounded by CnC\sqrt{n} for some C.C. From this it follows that the computation of the Kauffman bracket of the link takes time and memory a polynomial in nn times $2^{C\sqrt{n}}.

    Approximating the Spectrum of a Graph

    Full text link
    The spectrum of a network or graph G=(V,E)G=(V,E) with adjacency matrix AA, consists of the eigenvalues of the normalized Laplacian L=ID1/2AD1/2L= I - D^{-1/2} A D^{-1/2}. This set of eigenvalues encapsulates many aspects of the structure of the graph, including the extent to which the graph posses community structures at multiple scales. We study the problem of approximating the spectrum λ=(λ1,,λV)\lambda = (\lambda_1,\dots,\lambda_{|V|}), 0λ1,,λV20 \le \lambda_1,\le \dots, \le \lambda_{|V|}\le 2 of GG in the regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given the ability to query a random node in the graph and select a random neighbor of a given node, computes a succinct representation of an approximation λ~=(λ~1,,λ~V)\widetilde \lambda = (\widetilde \lambda_1,\dots,\widetilde \lambda_{|V|}), 0λ~1,,λ~V20 \le \widetilde \lambda_1,\le \dots, \le \widetilde \lambda_{|V|}\le 2 such that λ~λ1ϵV\|\widetilde \lambda - \lambda\|_1 \le \epsilon |V|. Our algorithm has query complexity and running time exp(O(1/ϵ))exp(O(1/\epsilon)), independent of the size of the graph, V|V|. We demonstrate the practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications of our algorithm to property testing in the bounded degree graph model

    Distributed coloring in sparse graphs with fewer colors

    Full text link
    This paper is concerned with efficiently coloring sparse graphs in the distributed setting with as few colors as possible. According to the celebrated Four Color Theorem, planar graphs can be colored with at most 4 colors, and the proof gives a (sequential) quadratic algorithm finding such a coloring. A natural problem is to improve this complexity in the distributed setting. Using the fact that planar graphs contain linearly many vertices of degree at most 6, Goldberg, Plotkin, and Shannon obtained a deterministic distributed algorithm coloring nn-vertex planar graphs with 7 colors in O(logn)O(\log n) rounds. Here, we show how to color planar graphs with 6 colors in \mbox{polylog}(n) rounds. Our algorithm indeed works more generally in the list-coloring setting and for sparse graphs (for such graphs we improve by at least one the number of colors resulting from an efficient algorithm of Barenboim and Elkin, at the expense of a slightly worst complexity). Our bounds on the number of colors turn out to be quite sharp in general. Among other results, we show that no distributed algorithm can color every nn-vertex planar graph with 4 colors in o(n)o(n) rounds.Comment: 16 pages, 4 figures - An extended abstract of this work was presented at PODC'18 (ACM Symposium on Principles of Distributed Computing

    Planar Induced Subgraphs of Sparse Graphs

    Full text link
    We show that every graph has an induced pseudoforest of at least nm/4.5n-m/4.5 vertices, an induced partial 2-tree of at least nm/5n-m/5 vertices, and an induced planar subgraph of at least nm/5.2174n-m/5.2174 vertices. These results are constructive, implying linear-time algorithms to find the respective induced subgraphs. We also show that the size of the largest KhK_h-minor-free graph in a given graph can sometimes be at most nm/6+o(m)n-m/6+o(m).Comment: Accepted by Graph Drawing 2014. To appear in Journal of Graph Algorithms and Application
    corecore