4,505 research outputs found

    Critical Boundary Sine-Gordon Revisited

    Full text link
    We revisit the exact solution of the two space-time dimensional quantum field theory of a free massless boson with a periodic boundary interaction and self-dual period. We analyze the model by using a mapping to free fermions with a boundary mass term originally suggested in ref.[22]. We find that the entire SL(2,C) family of boundary states of a single boson are boundary sine-Gordon states and we derive a simple explicit expression for the boundary state in fermion variables and as a function of sine-Gordon coupling constants. We use this expression to compute the partition function. We observe that the solution of the model has a strong-weak coupling generalization of T-duality. We then examine a class of recently discovered conformal boundary states for compact bosons with radii which are rational numbers times the self-dual radius. These have simple expression in fermion variables. We postulate sine-Gordon-like field theories with discrete gauge symmmetries for which they are the appropriate boundary states.Comment: 33 pages, 1 figure, references added, typos correcte

    Immersed boundary methods for numerical simulation of confined fluid and plasma turbulence in complex geometries: a review

    Full text link
    Immersed boundary methods for computing confined fluid and plasma flows in complex geometries are reviewed. The mathematical principle of the volume penalization technique is described and simple examples for imposing Dirichlet and Neumann boundary conditions in one dimension are given. Applications for fluid and plasma turbulence in two and three space dimensions illustrate the applicability and the efficiency of the method in computing flows in complex geometries, for example in toroidal geometries with asymmetric poloidal cross-sections.Comment: in Journal of Plasma Physics, 201

    The determinant of the Dirichlet-to-Neumann map for surfaces with boundary

    Get PDF
    For any orientable compact surface with boundary, we compute the regularized determinant of the Dirichlet-to-Neumann (DN) map in terms of particular values of dynamical zeta functions by using natural uniformizations, one due to Mazzeo-Taylor, the other to Osgood-Phillips-Sarnak. We also relate in any dimension the DN map for the Yamabe operator to the scattering operator for a conformally compact related problem by using uniformization.Comment: 16 page

    On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    Full text link
    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for coarse spatial resolutions and small time step sizes. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.Comment: 31 page

    Left-Right Entanglement Entropy of Dp-branes

    Full text link
    We compute the left-right entanglement entropy for Dp-branes in string theory. We employ the CFT approach to string theory Dp-branes, in particular, its presentation as coherent states of the closed string sector. The entanglement entropy is computed as the von Neumann entropy for a density matrix resulting from integration over the left-moving degrees of freedom. We discuss various crucial ambiguities related to sums over spin structures and argue that different choices capture different physics; however, we advance a themodynamic argument that seems to favor a particular choice of replica. We also consider Dp branes on compact dimensions and verify that the effects of T-duality act covariantly on the Dp brane entanglement entropy. We find that generically the left-right entanglement entropy provides a suitable generalization of boundary entropy and of the D-brane tension.Comment: 20 pages, 3 figures. v2: A thermodynamic argument favoring a particular treatment of spin structures is advanced; one figure improved and references adde

    Finite temperature Casimir effect for massive scalar field in spacetime with extra dimensions

    Full text link
    We compute the finite temperature Casimir energy for massive scalar field with general curvature coupling subject to Dirichlet or Neumann boundary conditions on the walls of a closed cylinder with arbitrary cross section, located in a background spacetime of the form Md1+1Ă—NnM^{d_1+1}\times \mathcal{N}^n, where Md1+1M^{d_1+1} is the (d1+1)(d_1+1)-dimensional Minkowski spacetime and Nn\mathcal{N}^n is an nn-dimensional internal manifold. The Casimir energy is regularized using the criteria that it should vanish in the infinite mass limit. The Casimir force acting on a piston moving freely inside the closed cylinder is derived and it is shown that it is independent of the regularization procedure. By letting one of the chambers of the cylinder divided by the piston to be infinitely long, we obtain the Casimir force acting on two parallel plates embedded in the cylinder. It is shown that if both the plates assume Dirichlet or Neumann boundary conditions, the strength of the Casimir force is reduced by the increase in mass. Under certain conditions, the passage from massless to massive will change the nature of the force from long range to short range. Other properties of the Casimir force such as its sign, its behavior at low and high temperature, and its behavior at small and large plate separations, are found to be similar to the massless case. Explicit exact formulas and asymptotic behaviors of the Casimir force at different limits are derived. The Casimir force when one plate assumes Dirichlet boundary condition and one plate assumes Neumann boundary condition is also derived and shown to be repulsive.Comment: 28 pages, 4 figure

    Mode summation approach to Casimir effect between two objects

    Full text link
    In this paper, we explore the TGTG formula from the perspective of mode summation approach. Both scalar fields and electromagnetic fields are considered. In this approach, one has to first solve the equation of motion to find a wave basis for each object. The two T's in the TGTG formula are T-matrices representing the Lippmann-Schwinger T-operators, one for each of the objects. The two G's in the TGTG formula are the translation matrices, relating the wave basis of an object to the wave basis of the other object. After discussing the general theory, we apply the prescription to derive the explicit formulas for the Casimir energies for the sphere-sphere, sphere-plane, cylinder-cylinder and cylinder-plane interactions. First the T-matrices for a plane, a sphere and a cylinder are derived for the following cases: the object is imposed with general Robin boundary conditions; the object is semitransparent; and the object is magnetodielectric. Then the operator approach is used to derive the translation matrices. From these, the explicit TGTG formula for each of the scenarios can be written down. Besides summarizing all the TGTG formulas that have been derived so far, we also provide the TGTG formulas for some scenarios that have not been considered before.Comment: 42 page

    Boundary State from Ellwood Invariants

    Full text link
    Boundary states are given by appropriate linear combinations of Ishibashi states. Starting from any OSFT solution and assuming Ellwood conjecture we show that every coefficient of such a linear combination is given by an Ellwood invariant, computed in a slightly modified theory where it does not trivially vanish by the on-shell condition. Unlike the previous construction of Kiermaier, Okawa and Zwiebach, ours is linear in the string field, it is manifestly gauge invariant and it is also suitable for solutions known only numerically. The correct boundary state is readily reproduced in the case of known analytic solutions and, as an example, we compute the energy momentum tensor of the rolling tachyon from the generalized invariants of the corresponding solution. We also compute the energy density profile of Siegel-gauge multiple lump solutions and show that, as the level increases, it correctly approaches a sum of delta functions. This provides a gauge invariant way of computing the separations between the lower dimensional D-branes.Comment: v2: 63 pages, 14 figures. Major improvements in section 2. Version published in JHE
    • …
    corecore