788 research outputs found

    Quantum ground state isoperimetric inequalities for the energy spectrum of local Hamiltonians

    Get PDF
    We investigate the relationship between the energy spectrum of a local Hamiltonian and the geometric properties of its ground state. By generalizing a standard framework from the analysis of Markov chains to arbitrary (non-stoquastic) Hamiltonians we are naturally led to see that the spectral gap can always be upper bounded by an isoperimetric ratio that depends only on the ground state probability distribution and the range of the terms in the Hamiltonian, but not on any other details of the interaction couplings. This means that for a given probability distribution the inequality constrains the spectral gap of any local Hamiltonian with this distribution as its ground state probability distribution in some basis (Eldar and Harrow derived a similar result in order to characterize the output of low-depth quantum circuits). Going further, we relate the Hilbert space localization properties of the ground state to higher energy eigenvalues by showing that the presence of k strongly localized ground state modes (i.e. clusters of probability, or subsets with small expansion) in Hilbert space implies the presence of k energy eigenvalues that are close to the ground state energy. Our results suggest that quantum adiabatic optimization using local Hamiltonians will inevitably encounter small spectral gaps when attempting to prepare ground states corresponding to multi-modal probability distributions with strongly localized modes, and this problem cannot necessarily be alleviated with the inclusion of non-stoquastic couplings

    Area laws for the entanglement entropy - a review

    Full text link
    Physical interactions in quantum many-body systems are typically local: Individual constituents interact mainly with their few nearest neighbors. This locality of interactions is inherited by a decay of correlation functions, but also reflected by scaling laws of a quite profound quantity: The entanglement entropy of ground states. This entropy of the reduced state of a subregion often merely grows like the boundary area of the subregion, and not like its volume, in sharp contrast with an expected extensive behavior. Such "area laws" for the entanglement entropy and related quantities have received considerable attention in recent years. They emerge in several seemingly unrelated fields, in the context of black hole physics, quantum information science, and quantum many-body physics where they have important implications on the numerical simulation of lattice models. In this Colloquium we review the current status of area laws in these fields. Center stage is taken by rigorous results on lattice models in one and higher spatial dimensions. The differences and similarities between bosonic and fermionic models are stressed, area laws are related to the velocity of information propagation, and disordered systems, non-equilibrium situations, classical correlation concepts, and topological entanglement entropies are discussed. A significant proportion of the article is devoted to the quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation. We discuss matrix-product states, higher-dimensional analogues, and states from entanglement renormalization and conclude by highlighting the implications of area laws on quantifying the effective degrees of freedom that need to be considered in simulations.Comment: 28 pages, 2 figures, final versio

    Quantum Hamiltonian Complexity

    Full text link
    Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via so-called area laws. Our aim here is to provide a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field. As such, we include the following in this survey: (1) The motivations and history of the field, (2) a glossary of condensed matter physics terms explained in computer-science friendly language, (3) overviews of central ideas from condensed matter physics, such as indistinguishable particles, mean field theory, tensor networks, and area laws, and (4) brief expositions of selected computer science-based results in the area. For example, as part of the latter, we provide a novel information theoretic presentation of Bravyi's polynomial time algorithm for Quantum 2-SAT.Comment: v4: published version, 127 pages, introduction expanded to include brief introduction to quantum information, brief list of some recent developments added, minor changes throughou

    Using the J1-J2 Quantum Spin Chain as an Adiabatic Quantum Data Bus

    Full text link
    This paper investigates numerically a phenomenon which can be used to transport a single q-bit down a J1-J2 Heisenberg spin chain using a quantum adiabatic process. The motivation for investigating such processes comes from the idea that this method of transport could potentially be used as a means of sending data to various parts of a quantum computer made of artificial spins, and that this method could take advantage of the easily prepared ground state at the so called Majumdar-Ghosh point. We examine several annealing protocols for this process and find similar result for all of them. The annealing process works well up to a critical frustration threshold.Comment: 14 pages, 13 figures (2 added), revisions made to add citations and additional discussion at request of referee
    • …
    corecore