9,474 research outputs found

    Bounds on the maximum multiplicity of some common geometric graphs

    Get PDF
    We obtain new lower and upper bounds for the maximum multiplicity of some weighted and, respectively, non-weighted common geometric graphs drawn on n points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of n points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits {\Omega}(8.65^n) different triangulations. This improves the bound {\Omega}(8.48^n) achieved by the double zig-zag chain configuration studied by Aichholzer et al. (ii) We present a new lower bound of {\Omega}(12.00^n) for the number of non-crossing spanning trees of the double chain composed of two convex chains. The previous bound, {\Omega}(10.42^n), stood unchanged for more than 10 years. (iii) Using a recent upper bound of 30^n for the number of triangulations, due to Sharir and Sheffer, we show that n points in the plane in general position admit at most O(68.62^n) non-crossing spanning cycles. (iv) We derive lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). We show that the number of shortest non-crossing tours can be exponential in n. Likewise, we show that both the number of longest non-crossing tours and the number of longest non-crossing perfect matchings can be exponential in n. Moreover, we show that there are sets of n points in convex position with an exponential number of longest non-crossing spanning trees. For points in convex position we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial characterization of the longest tours, which leads to an O(nlog n) time algorithm for computing them

    Markov modeling of peptide folding in the presence of protein crowders

    Full text link
    We use Markov state models (MSMs) to analyze the dynamics of a β\beta-hairpin-forming peptide in Monte Carlo (MC) simulations with interacting protein crowders, for two different types of crowder proteins [bovine pancreatic trypsin inhibitor (BPTI) and GB1]. In these systems, at the temperature used, the peptide can be folded or unfolded and bound or unbound to crowder molecules. Four or five major free-energy minima can be identified. To estimate the dominant MC relaxation times of the peptide, we build MSMs using a range of different time resolutions or lag times. We show that stable relaxation-time estimates can be obtained from the MSM eigenfunctions through fits to autocorrelation data. The eigenfunctions remain sufficiently accurate to permit stable relaxation-time estimation down to small lag times, at which point simple estimates based on the corresponding eigenvalues have large systematic uncertainties. The presence of the crowders have a stabilizing effect on the peptide, especially with BPTI crowders, which can be attributed to a reduced unfolding rate kuk_\text{u}, while the folding rate kfk_\text{f} is left largely unchanged.Comment: 18 pages, 6 figure

    Molecular dynamics simulations of lead clusters

    Full text link
    Molecular dynamics simulations of nanometer-sized lead clusters have been performed using the Lim, Ong and Ercolessi glue potential (Surf. Sci. {\bf 269/270}, 1109 (1992)). The binding energies of clusters forming crystalline (fcc), decahedron and icosahedron structures are compared, showing that fcc cuboctahedra are the most energetically favoured of these polyhedral model structures. However, simulations of the freezing of liquid droplets produced a characteristic form of ``shaved'' icosahedron, in which atoms are absent at the edges and apexes of the polyhedron. This arrangement is energetically favoured for 600-4000 atom clusters. Larger clusters favour crystalline structures. Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect fcc Wulff particle, containing a number of parallel stacking faults. The effects of temperature on the preferred structure of crystalline clusters below the melting point have been considered. The implications of these results for the interpretation of experimental data is discussed.Comment: 11 pages, 18 figues, new section added and one figure added, other minor changes for publicatio

    Calibrated Langevin dynamics simulations of intrinsically disordered proteins

    Full text link
    We perform extensive coarse-grained (CG) Langevin dynamics simulations of intrinsically disordered proteins (IDPs), which possess fluctuating conformational statistics between that for excluded volume random walks and collapsed globules. Our CG model includes repulsive steric, attractive hydrophobic, and electrostatic interactions between residues and is calibrated to a large collection of single-molecule fluorescence resonance energy transfer data on the inter-residue separations for 36 pairs of residues in five IDPs: α\alpha-, β\beta-, and γ\gamma-synuclein, the microtubule-associated protein τ\tau, and prothymosin α\alpha. We find that our CG model is able to recapitulate the average inter-residue separations regardless of the choice of the hydrophobicity scale, which shows that our calibrated model can robustly capture the conformational dynamics of IDPs. We then employ our model to study the scaling of the radius of gyration with chemical distance in 11 known IDPs. We identify a strong correlation between the distance to the dividing line between folded proteins and IDPs in the mean charge and hydrophobicity space and the scaling exponent of the radius of gyration with chemical distance along the protein.Comment: 16 pages, 10 figure
    • …
    corecore