11,539 research outputs found

    Structure computation and discrete logarithms in finite abelian p-groups

    Full text link
    We present a generic algorithm for computing discrete logarithms in a finite abelian p-group H, improving the Pohlig-Hellman algorithm and its generalization to noncyclic groups by Teske. We then give a direct method to compute a basis for H without using a relation matrix. The problem of computing a basis for some or all of the Sylow p-subgroups of an arbitrary finite abelian group G is addressed, yielding a Monte Carlo algorithm to compute the structure of G using O(|G|^0.5) group operations. These results also improve generic algorithms for extracting pth roots in G.Comment: 23 pages, minor edit

    Discrete logarithm computations over finite fields using Reed-Solomon codes

    Get PDF
    Cheng and Wan have related the decoding of Reed-Solomon codes to the computation of discrete logarithms over finite fields, with the aim of proving the hardness of their decoding. In this work, we experiment with solving the discrete logarithm over GF(q^h) using Reed-Solomon decoding. For fixed h and q going to infinity, we introduce an algorithm (RSDL) needing O (h! q^2) operations over GF(q), operating on a q x q matrix with (h+2) q non-zero coefficients. We give faster variants including an incremental version and another one that uses auxiliary finite fields that need not be subfields of GF(q^h); this variant is very practical for moderate values of q and h. We include some numerical results of our first implementations

    Discrete logarithms in curves over finite fields

    Get PDF
    A survey on algorithms for computing discrete logarithms in Jacobians of curves over finite fields

    Security Estimates for Quadratic Field Based Cryptosystems

    Get PDF
    We describe implementations for solving the discrete logarithm problem in the class group of an imaginary quadratic field and in the infrastructure of a real quadratic field. The algorithms used incorporate improvements over previously-used algorithms, and extensive numerical results are presented demonstrating their efficiency. This data is used as the basis for extrapolations, used to provide recommendations for parameter sizes providing approximately the same level of security as block ciphers with 80,80, 112,112, 128,128, 192,192, and 256256-bit symmetric keys

    A Discrete Logarithm-based Approach to Compute Low-Weight Multiples of Binary Polynomials

    Full text link
    Being able to compute efficiently a low-weight multiple of a given binary polynomial is often a key ingredient of correlation attacks to LFSR-based stream ciphers. The best known general purpose algorithm is based on the generalized birthday problem. We describe an alternative approach which is based on discrete logarithms and has much lower memory complexity requirements with a comparable time complexity.Comment: 12 page

    Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

    Get PDF
    A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.Comment: 28 pages, LaTeX. This is an expanded version of a paper that appeared in the Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, Nov. 20--22, 1994. Minor revisions made January, 199

    A kilobit hidden SNFS discrete logarithm computation

    Get PDF
    We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever reported for prime fields. This computation took a little over two months of calendar time on an academic cluster using the open-source CADO-NFS software. Our chosen prime pp looks random, and p−−1p--1 has a 160-bit prime factor, in line with recommended parameters for the Digital Signature Algorithm. However, our p has been trapdoored in such a way that the special number field sieve can be used to compute discrete logarithms in F_p∗\mathbb{F}\_p^* , yet detecting that p has this trapdoor seems out of reach. Twenty-five years ago, there was considerable controversy around the possibility of back-doored parameters for DSA. Our computations show that trapdoored primes are entirely feasible with current computing technology. We also describe special number field sieve discrete log computations carried out for multiple weak primes found in use in the wild. As can be expected from a trapdoor mechanism which we say is hard to detect, our research did not reveal any trapdoored prime in wide use. The only way for a user to defend against a hypothetical trapdoor of this kind is to require verifiably random primes
    • …
    corecore