893 research outputs found

    New Structured Matrix Methods for Real and Complex Polynomial Root-finding

    Full text link
    We combine the known methods for univariate polynomial root-finding and for computations in the Frobenius matrix algebra with our novel techniques to advance numerical solution of a univariate polynomial equation, and in particular numerical approximation of the real roots of a polynomial. Our analysis and experiments show efficiency of the resulting algorithms.Comment: 18 page

    Development of symbolic algorithms for certain algebraic processes

    Get PDF
    This study investigates the problem of computing the exact greatest common divisor of two polynomials relative to an orthogonal basis, defined over the rational number field. The main objective of the study is to design and implement an effective and efficient symbolic algorithm for the general class of dense polynomials, given the rational number defining terms of their basis. From a general algorithm using the comrade matrix approach, the nonmodular and modular techniques are prescribed. If the coefficients of the generalized polynomials are multiprecision integers, multiprecision arithmetic will be required in the construction of the comrade matrix and the corresponding systems coefficient matrix. In addition, the application of the nonmodular elimination technique on this coefficient matrix extensively applies multiprecision rational number operations. The modular technique is employed to minimize the complexity involved in such computations. A divisor test algorithm that enables the detection of an unlucky reduction is a crucial device for an effective implementation of the modular technique. With the bound of the true solution not known a priori, the test is devised and carefully incorporated into the modular algorithm. The results illustrate that the modular algorithm illustrate its best performance for the class of relatively prime polynomials. The empirical computing time results show that the modular algorithm is markedly superior to the nonmodular algorithms in the case of sufficiently dense Legendre basis polynomials with a small GCD solution. In the case of dense Legendre basis polynomials with a big GCD solution, the modular algorithm is significantly superior to the nonmodular algorithms in higher degree polynomials. For more definitive conclusions, the computing time functions of the algorithms that are presented in this report have been worked out. Further investigations have also been suggested

    Hardware Acceleration Technologies in Computer Algebra: Challenges and Impact

    Get PDF
    The objective of high performance computing (HPC) is to ensure that the computational power of hardware resources is well utilized to solve a problem. Various techniques are usually employed to achieve this goal. Improvement of algorithm to reduce the number of arithmetic operations, modifications in accessing data or rearrangement of data in order to reduce memory traffic, code optimization at all levels, designing parallel algorithms to reduce span are some of the attractive areas that HPC researchers are working on. In this thesis, we investigate HPC techniques for the implementation of basic routines in computer algebra targeting hardware acceleration technologies. We start with a sorting algorithm and its application to sparse matrix-vector multiplication for which we focus on work on cache complexity issues. Since basic routines in computer algebra often provide a lot of fine grain parallelism, we then turn our attention to manycore architectures on which we consider dense polynomial and matrix operations ranging from plain to fast arithmetic. Most of these operations are combined within a bivariate system solver running entirely on a graphics processing unit (GPU)
    corecore