1,580 research outputs found

    A Game-theoretic Framework for Revenue Sharing in Edge-Cloud Computing System

    Full text link
    We introduce a game-theoretic framework to ex- plore revenue sharing in an Edge-Cloud computing system, in which computing service providers at the edge of the Internet (edge providers) and computing service providers at the cloud (cloud providers) co-exist and collectively provide computing resources to clients (e.g., end users or applications) at the edge. Different from traditional cloud computing, the providers in an Edge-Cloud system are independent and self-interested. To achieve high system-level efficiency, the manager of the system adopts a task distribution mechanism to maximize the total revenue received from clients and also adopts a revenue sharing mechanism to split the received revenue among computing servers (and hence service providers). Under those system-level mechanisms, service providers attempt to game with the system in order to maximize their own utilities, by strategically allocating their resources (e.g., computing servers). Our framework models the competition among the providers in an Edge-Cloud system as a non-cooperative game. Our simulations and experiments on an emulation system have shown the existence of Nash equilibrium in such a game. We find that revenue sharing mechanisms have a significant impact on the system-level efficiency at Nash equilibria, and surprisingly the revenue sharing mechanism based directly on actual contributions can result in significantly worse system efficiency than Shapley value sharing mechanism and Ortmann proportional sharing mechanism. Our framework provides an effective economics approach to understanding and designing efficient Edge-Cloud computing systems

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Equilibrium Computation in Resource Allocation Games

    Full text link
    We study the equilibrium computation problem for two classical resource allocation games: atomic splittable congestion games and multimarket Cournot oligopolies. For atomic splittable congestion games with singleton strategies and player-specific affine cost functions, we devise the first polynomial time algorithm computing a pure Nash equilibrium. Our algorithm is combinatorial and computes the exact equilibrium assuming rational input. The idea is to compute an equilibrium for an associated integrally-splittable singleton congestion game in which the players can only split their demands in integral multiples of a common packet size. While integral games have been considered in the literature before, no polynomial time algorithm computing an equilibrium was known. Also for this class, we devise the first polynomial time algorithm and use it as a building block for our main algorithm. We then develop a polynomial time computable transformation mapping a multimarket Cournot competition game with firm-specific affine price functions and quadratic costs to an associated atomic splittable congestion game as described above. The transformation preserves equilibria in either games and, thus, leads -- via our first algorithm -- to a polynomial time algorithm computing Cournot equilibria. Finally, our analysis for integrally-splittable games implies new bounds on the difference between real and integral Cournot equilibria. The bounds can be seen as a generalization of the recent bounds for single market oligopolies obtained by Todd [2016].Comment: This version contains some typo corrections onl

    Evolutionary Poisson Games for Controlling Large Population Behaviors

    Full text link
    Emerging applications in engineering such as crowd-sourcing and (mis)information propagation involve a large population of heterogeneous users or agents in a complex network who strategically make dynamic decisions. In this work, we establish an evolutionary Poisson game framework to capture the random, dynamic and heterogeneous interactions of agents in a holistic fashion, and design mechanisms to control their behaviors to achieve a system-wide objective. We use the antivirus protection challenge in cyber security to motivate the framework, where each user in the network can choose whether or not to adopt the software. We introduce the notion of evolutionary Poisson stable equilibrium for the game, and show its existence and uniqueness. Online algorithms are developed using the techniques of stochastic approximation coupled with the population dynamics, and they are shown to converge to the optimal solution of the controller problem. Numerical examples are used to illustrate and corroborate our results

    Price of Competition and Dueling Games

    Get PDF
    We study competition in a general framework introduced by Immorlica et al. and answer their main open question. Immorlica et al. considered classic optimization problems in terms of competition and introduced a general class of games called dueling games. They model this competition as a zero-sum game, where two players are competing for a user's satisfaction. In their main and most natural game, the ranking duel, a user requests a webpage by submitting a query and players output an ordering over all possible webpages based on the submitted query. The user tends to choose the ordering which displays her requested webpage in a higher rank. The goal of both players is to maximize the probability that her ordering beats that of her opponent and gets the user's attention. Immorlica et al. show this game directs both players to provide suboptimal search results. However, they leave the following as their main open question: "does competition between algorithms improve or degrade expected performance?" In this paper, we resolve this question for the ranking duel and a more general class of dueling games. More precisely, we study the quality of orderings in a competition between two players. This game is a zero-sum game, and thus any Nash equilibrium of the game can be described by minimax strategies. Let the value of the user for an ordering be a function of the position of her requested item in the corresponding ordering, and the social welfare for an ordering be the expected value of the corresponding ordering for the user. We propose the price of competition which is the ratio of the social welfare for the worst minimax strategy to the social welfare obtained by a social planner. We use this criterion for analyzing the quality of orderings in the ranking duel. We prove the quality of minimax results is surprisingly close to that of the optimum solution

    Strategic Network Interdiction

    Get PDF
    We develop a strategic model of network interdiction in a non-cooperative game of flow. An adversary, endowed with a bounded quantity of bads, chooses a flow specifying a plan for carrying bads through a network from a base to a target. Simultaneously, an agency chooses a blockage specifying a plan for blocking the transport of bads through arcs in the network. The bads carried to the target cause a target loss while the blocked arcs cause a network loss. The adversary earns and the agency loses from both target loss and network loss. The adversary incurs the expense of carrying bads. In this model we study Nash equilibria and find a power law relation between the probability and the extent of the target loss. Our model contributes to the literature of game theory by introducing non-cooperative behavior into a Kalai-Zemel (cooperative) game of flow. Our research also advances models and results on network interdiction.Network Interdiction, Noncooperative Game of Flow, Nash Equilibrium, Power Law, Kalai-Zemel Game of Flow
    • …
    corecore