847 research outputs found

    Learning and Type Compatibility in Signaling Games

    Full text link
    Which equilibria will arise in signaling games depends on how the receiver interprets deviations from the path of play. We develop a micro-foundation for these off-path beliefs, and an associated equilibrium refinement, in a model where equilibrium arises through non-equilibrium learning by populations of patient and long-lived senders and receivers. In our model, young senders are uncertain about the prevailing distribution of play, so they rationally send out-of-equilibrium signals as experiments to learn about the behavior of the population of receivers. Differences in the payoff functions of the types of senders generate different incentives for these experiments. Using the Gittins index (Gittins, 1979), we characterize which sender types use each signal more often, leading to a constraint on the receiver's off-path beliefs based on "type compatibility" and hence a learning-based equilibrium selection

    Computing Bayes Nash Equilibrium Strategies in Auction Games via Simultaneous Online Dual Averaging

    Full text link
    Auctions are modeled as Bayesian games with continuous type and action spaces. Computing equilibria in auction games is computationally hard in general and no exact solution theory is known. We introduce algorithms computing distributional strategies on a discretized version of the game via online convex optimization. One advantage of distributional strategies is that we do not have to make any assumptions on the shape of the bid function. Besides, the expected utility of agents is linear in the strategies. It follows that if our regularized optimization algorithms converge to a pure strategy, then they converge to an approximate equilibrium of the discretized game with high precision. Importantly, we show that the equilibrium of the discretized game approximates an equilibrium in the continuous game. In a wide variety of auction games, we provide empirical evidence that the method approximates the analytical (pure) Bayes Nash equilibrium closely. This speed and precision is remarkable, because in many finite games learning dynamics do not converge or are even chaotic. In standard models where agents are symmetric, we find equilibrium in seconds. The method allows for interdependent valuations and different types of utility functions and provides a foundation for broadly applicable equilibrium solvers that can push the boundaries of equilibrium analysis in auction markets and beyond
    • …
    corecore