5,115 research outputs found

    Generalized Planning with Positive and Negative Examples

    Get PDF
    Generalized planning aims at computing an algorithm-like structure (generalized plan) that solves a set of multiple planning instances. In this paper we define negative examples for generalized planning as planning instances that must not be solved by a generalized plan. With this regard the paper extends the notion of validation of a generalized plan as the problem of verifying that a given generalized plan solves the set of input positives instances while it fails to solve a given input set of negative examples. This notion of plan validation allows us to define quantitative metrics to asses the generalization capacity of generalized plans. The paper also shows how to incorporate this new notion of plan validation into a compilation for plan synthesis that takes both positive and negative instances as input. Experiments show that incorporating negative examples can accelerate plan synthesis in several domains and leverage quantitative metrics to evaluate the generalization capacity of the synthesized plans.Comment: Accepted at AAAI-20 (oral presentation

    RoboTSP - A Fast Solution to the Robotic Task Sequencing Problem

    Full text link
    In many industrial robotics applications, such as spot-welding, spray-painting or drilling, the robot is required to visit successively multiple targets. The robot travel time among the targets is a significant component of the overall execution time. This travel time is in turn greatly affected by the order of visit of the targets, and by the robot configurations used to reach each target. Therefore, it is crucial to optimize these two elements, a problem known in the literature as the Robotic Task Sequencing Problem (RTSP). Our contribution in this paper is two-fold. First, we propose a fast, near-optimal, algorithm to solve RTSP. The key to our approach is to exploit the classical distinction between task space and configuration space, which, surprisingly, has been so far overlooked in the RTSP literature. Second, we provide an open-source implementation of the above algorithm, which has been carefully benchmarked to yield an efficient, ready-to-use, software solution. We discuss the relationship between RTSP and other Traveling Salesman Problem (TSP) variants, such as the Generalized Traveling Salesman Problem (GTSP), and show experimentally that our method finds motion sequences of the same quality but using several orders of magnitude less computation time than existing approaches.Comment: 6 pages, 7 figures, 1 tabl

    Learning STRIPS Action Models with Classical Planning

    Full text link
    This paper presents a novel approach for learning STRIPS action models from examples that compiles this inductive learning task into a classical planning task. Interestingly, the compilation approach is flexible to different amounts of available input knowledge; the learning examples can range from a set of plans (with their corresponding initial and final states) to just a pair of initial and final states (no intermediate action or state is given). Moreover, the compilation accepts partially specified action models and it can be used to validate whether the observation of a plan execution follows a given STRIPS action model, even if this model is not fully specified.Comment: 8+1 pages, 4 figures, 6 table

    Learning to solve planning problems efficiently by means of genetic programming

    Get PDF
    Declarative problem solving, such as planning, poses interesting challenges for Genetic Programming (GP). There have been recent attempts to apply GP to planning that fit two approaches: (a) using GP to search in plan space or (b) to evolve a planner. In this article, we propose to evolve only the heuristics to make a particular planner more efficient. This approach is more feasible than (b) because it does not have to build a planner from scratch but can take advantage of already existing planning systems. It is also more efficient than (a) because once the heuristics have been evolved, they can be used to solve a whole class of different planning problems in a planning domain, instead of running GP for every new planning problem. Empirical results show that our approach (EVOCK) is able to evolve heuristics in two planning domains (the blocks world and the logistics domain) that improve PRODIGY4.0 performance. Additionally, we experiment with a new genetic operator - Instance-Based Crossover - that is able to use traces of the base planner as raw genetic material to be injected into the evolving population.Publicad
    • …
    corecore