62,810 research outputs found

    Algorithmic complexity for psychology: A user-friendly implementation of the coding theorem method

    Full text link
    Kolmogorov-Chaitin complexity has long been believed to be impossible to approximate when it comes to short sequences (e.g. of length 5-50). However, with the newly developed \emph{coding theorem method} the complexity of strings of length 2-11 can now be numerically estimated. We present the theoretical basis of algorithmic complexity for short strings (ACSS) and describe an R-package providing functions based on ACSS that will cover psychologists' needs and improve upon previous methods in three ways: (1) ACSS is now available not only for binary strings, but for strings based on up to 9 different symbols, (2) ACSS no longer requires time-consuming computing, and (3) a new approach based on ACSS gives access to an estimation of the complexity of strings of any length. Finally, three illustrative examples show how these tools can be applied to psychology.Comment: to appear in "Behavioral Research Methods", 14 pages in journal format, R package at http://cran.r-project.org/web/packages/acss/index.htm

    Hamming distance kernelisation via topological quantum computation

    Get PDF
    We present a novel approach to computing Hamming distance and its kernelisation within Topological Quantum Computation. This approach is based on an encoding of two binary strings into a topological Hilbert space, whose inner product yields a natural Hamming distance kernel on the two strings. Kernelisation forges a link with the field of Machine Learning, particularly in relation to binary classifiers such as the Support Vector Machine (SVM). This makes our approach of potential interest to the quantum machine learning community

    Hamming distance kernelisation via topological quantum computation

    Get PDF
    We present a novel approach to computing Hamming distance and its kernelisation within Topological Quantum Computation. This approach is based on an encoding of two binary strings into a topological Hilbert space, whose inner product yields a natural Hamming distance kernel on the two strings. Kernelisation forges a link with the field of Machine Learning, particularly in relation to binary classifiers such as the Support Vector Machine (SVM). This makes our approach of potential interest to the quantum machine learning community

    Probabilistic initial value problem for cellular automaton rule 172

    Full text link
    We consider the problem of computing a response curve for binary cellular automata -- that is, the curve describing the dependence of the density of ones after many iterations of the rule on the initial density of ones. We demonstrate how this problem could be approached using rule 130 as an example. For this rule, preimage sets of finite strings exhibit recognizable patterns, and it is therefore possible to compute both cardinalities of preimages of certain finite strings and probabilities of occurrence of these strings in a configuration obtained by iterating a random initial configuration nn times. Response curves can be rigorously calculated in both one- and two-dimensional versions of CA rule 130. We also discuss a special case of totally disordered initial configurations, that is, random configurations where the density of ones and zeros are equal to 1/2.Comment: 13 pages, 3 figure

    On the Complexity of Exact Pattern Matching in Graphs: Binary Strings and Bounded Degree

    Get PDF
    Exact pattern matching in labeled graphs is the problem of searching paths of a graph G=(V,E)G=(V,E) that spell the same string as the pattern P[1..m]P[1..m]. This basic problem can be found at the heart of more complex operations on variation graphs in computational biology, of query operations in graph databases, and of analysis operations in heterogeneous networks, where the nodes of some paths must match a sequence of labels or types. We describe a simple conditional lower bound that, for any constant ϵ>0\epsilon>0, an O(E1ϵm)O(|E|^{1 - \epsilon} \, m)-time or an O(Em1ϵ)O(|E| \, m^{1 - \epsilon})-time algorithm for exact pattern matching on graphs, with node labels and patterns drawn from a binary alphabet, cannot be achieved unless the Strong Exponential Time Hypothesis (SETH) is false. The result holds even if restricted to undirected graphs of maximum degree three or directed acyclic graphs of maximum sum of indegree and outdegree three. Although a conditional lower bound of this kind can be somehow derived from previous results (Backurs and Indyk, FOCS'16), we give a direct reduction from SETH for dissemination purposes, as the result might interest researchers from several areas, such as computational biology, graph database, and graph mining, as mentioned before. Indeed, as approximate pattern matching on graphs can be solved in O(Em)O(|E|\,m) time, exact and approximate matching are thus equally hard (quadratic time) on graphs under the SETH assumption. In comparison, the same problems restricted to strings have linear time vs quadratic time solutions, respectively, where the latter ones have a matching SETH lower bound on computing the edit distance of two strings (Backurs and Indyk, STOC'15).Comment: Using Lemma 12 and Lemma 13 might to be enough to prove Lemma 14. However, the proof of Lemma 14 is correct if you assume that the graph used in the reduction is a DAG. Hence, since the problem is already quadratic for a DAG and a binary alphabet, it has to be quadratic also for a general graph and a binary alphabe

    Computation using Noise-based Logic: Efficient String Verification over a Slow Communication Channel

    Full text link
    Utilizing the hyperspace of noise-based logic, we show two string verification methods with low communication complexity. One of them is based on continuum noise-based logic. The other one utilizes noise-based logic with random telegraph signals where a mathematical analysis of the error probability is also given. The last operation can also be interpreted as computing universal hash functions with noise-based logic and using them for string comparison. To find out with 10^-25 error probability that two strings with arbitrary length are different (this value is similar to the error probability of an idealistic gate in today's computer) Alice and Bob need to compare only 83 bits of the noise-based hyperspace.Comment: Accepted for publication in European Journal of Physics B (November 10, 2010
    corecore