132,162 research outputs found

    A Graph-Based Approach to Address Trust and Reputation in Ubiquitous Networks

    Get PDF
    The increasing popularity of virtual computing environments such as Cloud and Grid computing is helping to drive the realization of ubiquitous and pervasive computing. However, as computing becomes more entrenched in everyday life, the concepts of trust and risk become increasingly important. In this paper, we propose a new graph-based theoretical approach to address trust and reputation in complex ubiquitous networks. We formulate trust as a function of quality of a task and time required to authenticate agent-to-agent relationship based on the Zero-Common Knowledge (ZCK) authentication scheme. This initial representation applies a graph theory concept, accompanied by a mathematical formulation of trust metrics. The approach we propose increases awareness and trustworthiness to agents based on the values estimated for each requested task, we conclude by stating our plans for future work in this area

    To Trust or Not to Trust? Developing Trusted Digital Spaces through Timely Reliable and Personalized Provenance

    Get PDF
    Organizations are increasingly dependent on data stored and processed by distributed, heterogeneous services to make critical, high-value decisions. However, these service-oriented computing environments are dynamic in nature and are becoming ever more complex systems of systems. In such evolving and dynamic eco-system infrastructures, knowing how data was derived is of significant importance in determining its validity and reliability. To address this, a number of advocates and theorists postulate that provenance is critical to building trust in data and the services that generated it as it provides evidence for data consumers to judge the integrity of the results. This paper presents a summary of the STRAPP (trusted digital Spaces through Timely Reliable And Personalised Provenance) project, which is designing and engineering mechanisms to achieve a holistic solution to a number of real-world service-based decision-support systems

    A Bayesian model for event-based trust

    No full text
    The application scenarios envisioned for ‘global ubiquitous computing’ have unique requirements that are often incompatible with traditional security paradigms. One alternative currently being investigated is to support security decision-making by explicit representation of principals’ trusting relationships, i.e., via systems for computational trust. We focus here on systems where trust in a computational entity is interpreted as the expectation of certain future behaviour based on behavioural patterns of the past, and concern ourselves with the foundations of such probabilistic systems. In particular, we aim at establishing formal probabilistic models for computational trust and their fundamental properties. In the paper we define a mathematical measure for quantitatively comparing the effectiveness of probabilistic computational trust systems in various environments. Using it, we compare some of the systems from the computational trust literature; the comparison is derived formally, rather than obtained via experimental simulation as traditionally done. With this foundation in place, we formalise a general notion of information about past behaviour, based on event structures. This yields a flexible trust model where the probability of complex protocol outcomes can be assessed

    Towards trusted volunteer grid environments

    Full text link
    Intensive experiences show and confirm that grid environments can be considered as the most promising way to solve several kinds of problems relating either to cooperative work especially where involved collaborators are dispersed geographically or to some very greedy applications which require enough power of computing or/and storage. Such environments can be classified into two categories; first, dedicated grids where the federated computers are solely devoted to a specific work through its end. Second, Volunteer grids where federated computers are not completely devoted to a specific work but instead they can be randomly and intermittently used, at the same time, for any other purpose or they can be connected or disconnected at will by their owners without any prior notification. Each category of grids includes surely several advantages and disadvantages; nevertheless, we think that volunteer grids are very promising and more convenient especially to build a general multipurpose distributed scalable environment. Unfortunately, the big challenge of such environments is, however, security and trust. Indeed, owing to the fact that every federated computer in such an environment can randomly be used at the same time by several users or can be disconnected suddenly, several security problems will automatically arise. In this paper, we propose a novel solution based on identity federation, agent technology and the dynamic enforcement of access control policies that lead to the design and implementation of trusted volunteer grid environments.Comment: 9 Pages, IJCNC Journal 201

    Trust-Oriented Composite Services Selection and Discovery

    Get PDF
    In Service-Oriented Computing (SOC) environments, service clients interact with service providers for consuming services. From the viewpoint of service clients, the trust level of a service or a service provider is a critical issue to consider in service selection and discovery, particularly when a client is looking for a service from a large set of services or service providers. However, a service may invoke other services offered by different providers forming composite services. The complex invocations in composite services greatly increase the complexity of trust-oriented service selection and discovery. In this paper, we propose novel approaches for composite service representation, trust evaluation and trust-oriented service selection and discovery. Our experiments illustrate that compared with the existing approaches our proposed trust-oriented service selection and discovery algorithm is realistic and more efficient.18 page(s

    Trust-oriented composite service selection with QoS constraints

    Get PDF
    Abstract: In Service-Oriented Computing (SOC) environments, service clients interact with service providers for consuming services. From the viewpoint of service clients, the trust level of a service or a service provider is a critical factor to consider in service selection, particularly when a client is looking for a service from a large set of services or service providers. However, a invoked service may be composed of other services. The complex invocations in composite services greatly increase the complexity of trust-oriented service selection. In this paper, we propose novel approaches for composite service representation, trust evaluation and trust-oriented composite service selection (with QoS constraints). Our experimental results illustrate that compared with the existing approaches our proposed trust-oriented (QoS constrained) composite service selection algorithms are realistic and enjoy better efficiency. Key Words: composite service, composite service selection, composite service representation, trust evaluation, Monte Carlo metho

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning
    corecore