531 research outputs found

    Deep Learning Methods for 3D Aerial and Satellite Data

    Get PDF
    Recent advances in digital electronics have led to an overabundance of observations from electro-optical (EO) imaging sensors spanning high spatial, spectral and temporal resolution. This unprecedented volume, variety, and velocity is overwhelming our capacity to manage and translate that data into actionable information. Although decades of image processing research have taken the human out of the loop for many important tasks, the human analyst is still an irreplaceable link in the image exploitation chain, especially for more complex tasks requiring contextual understanding, memory, discernment, and learning. If knowledge discovery is to keep pace with the growing availability of data, new processing paradigms are needed in order to automate the analysis of earth observation imagery and ease the burden of manual interpretation. To address this gap, this dissertation advances fundamental and applied research in deep learning for aerial and satellite imagery. We show how deep learning---a computational model inspired by the human brain---can be used for (1) tracking, (2) classifying, and (3) modeling from a variety of data sources including full-motion video (FMV), Light Detection and Ranging (LiDAR), and stereo photogrammetry. First we assess the ability of a bio-inspired tracking method to track small targets using aerial videos. The tracker uses three kinds of saliency maps: appearance, location, and motion. Our approach achieves the best overall performance, including being the only method capable of handling long-term occlusions. Second, we evaluate the classification accuracy of a multi-scale fully convolutional network to label individual points in LiDAR data. Our method uses only the 3D-coordinates and corresponding low-dimensional spectral features for each point. Evaluated using the ISPRS 3D Semantic Labeling Contest, our method scored second place with an overall accuracy of 81.6\%. Finally, we validate the prediction capability of our neighborhood-aware network to model the bare-earth surface of LiDAR and stereo photogrammetry point clouds. The network bypasses traditionally-used ground classifications and seamlessly integrate neighborhood features with point-wise and global features to predict a per point Digital Terrain Model (DTM). We compare our results with two widely used softwares for DTM extraction, ENVI and LAStools. Together, these efforts have the potential to alleviate the manual burden associated with some of the most challenging and time-consuming geospatial processing tasks, with implications for improving our response to issues of global security, emergency management, and disaster response

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Automatic coarse co-registration of point clouds from diverse scan geometries: a test of detectors and descriptors

    Full text link
    Point clouds are collected nowadays from a plethora of sensors, some having higher accuracies and higher costs, some having lower accuracies but also lower costs. Not only there is a large choice for different sensors, but also these can be transported by different platforms, which can provide different scan geometries. In this work we test the extraction of four different keypoint detectors and three feature descriptors. We benchmark performance in terms of calculation time and we assess their performance in terms of accuracy in their ability in coarse automatic co-registration of two clouds that are collected with different sensors, platforms and scan geometries. One, which we define as having the higher accuracy, and thus will be used as reference, was surveyed via a UAV flight with a Riegl MiniVUX-3, the other on a bicycle with a Livox Horizon over a walking path with un-even ground.The novelty in this work consists in comparing several strategies for fast alignment of point clouds from very different surveying geometries, as the drone has a bird's eye view and the bicycle a ground-based view. An added challenge is related to the lower cost of the bicycle sensor ensemble that, together with the rough terrain, reasonably results in lower accuracy of the survey. The main idea is to use range images to capture a simplified version of the geometry of the surveyed area and then find the best features to match keypoints. Results show that NARF features detected more keypoints and resulted in a faster co-registration procedure in this scenariowhereas the accuracy of the co-registration is similar to all the combinations of keypoint detectors and features

    ROBUST TECHNIQUES FOR BUILDING FOOTPRINT EXTRACTION IN AERIAL LASER SCANNING 3D POINT CLOUDS

    Get PDF
    The building footprint is crucial for a volumetric 3D representation of a building that is applied in urban planning, 3D city modeling, cadastral and topographic map generation. Aerial laser scanning (ALS) has been recognized as the most suitable means of large-scale 3D point cloud data (PCD) acquisition. PCD can produce geometric detail of a scanned surface. However, it is almost impossible to get point clouds without noise and outliers. Besides, data incompleteness and occlusions are two common phenomena for PCD. Most of the existing methods for building footprint extraction employ classification, segmentation, voting techniques (e.g., Hough-Transform or RANSAC), or Principal Component Analysis (PCA) based methods. It is known that classical PCA is highly sensitive to outliers, even RANSAC which is known as a robust technique for shape detection is not free from outlier effects. This paper presents a novel algorithm that employs MCMD (maximum consistency within minimum distance), MSAC (a robust variant of RANSAC) and a robust regression to extract reliable building footprints in the presence of outliers, missing points and irregular data distributions. The algorithm is successfully demonstrated through two sets of ALS PCD

    MOR-UAV: A Benchmark Dataset and Baselines for Moving Object Recognition in UAV Videos

    Full text link
    Visual data collected from Unmanned Aerial Vehicles (UAVs) has opened a new frontier of computer vision that requires automated analysis of aerial images/videos. However, the existing UAV datasets primarily focus on object detection. An object detector does not differentiate between the moving and non-moving objects. Given a real-time UAV video stream, how can we both localize and classify the moving objects, i.e. perform moving object recognition (MOR)? The MOR is one of the essential tasks to support various UAV vision-based applications including aerial surveillance, search and rescue, event recognition, urban and rural scene understanding.To the best of our knowledge, no labeled dataset is available for MOR evaluation in UAV videos. Therefore, in this paper, we introduce MOR-UAV, a large-scale video dataset for MOR in aerial videos. We achieve this by labeling axis-aligned bounding boxes for moving objects which requires less computational resources than producing pixel-level estimates. We annotate 89,783 moving object instances collected from 30 UAV videos, consisting of 10,948 frames in various scenarios such as weather conditions, occlusion, changing flying altitude and multiple camera views. We assigned the labels for two categories of vehicles (car and heavy vehicle). Furthermore, we propose a deep unified framework MOR-UAVNet for MOR in UAV videos. Since, this is a first attempt for MOR in UAV videos, we present 16 baseline results based on the proposed framework over the MOR-UAV dataset through quantitative and qualitative experiments. We also analyze the motion-salient regions in the network through multiple layer visualizations. The MOR-UAVNet works online at inference as it requires only few past frames. Moreover, it doesn't require predefined target initialization from user. Experiments also demonstrate that the MOR-UAV dataset is quite challenging
    • …
    corecore