6,503 research outputs found

    On Cavity Approximations for Graphical Models

    Get PDF
    We reformulate the Cavity Approximation (CA), a class of algorithms recently introduced for improving the Bethe approximation estimates of marginals in graphical models. In our new formulation, which allows for the treatment of multivalued variables, a further generalization to factor graphs with arbitrary order of interaction factors is explicitly carried out, and a message passing algorithm that implements the first order correction to the Bethe approximation is described. Furthermore we investigate an implementation of the CA for pairwise interactions. In all cases considered we could confirm that CA[k] with increasing kk provides a sequence of approximations of markedly increasing precision. Furthermore in some cases we could also confirm the general expectation that the approximation of order kk, whose computational complexity is O(Nk+1)O(N^{k+1}) has an error that scales as 1/Nk+11/N^{k+1} with the size of the system. We discuss the relation between this approach and some recent developments in the field.Comment: Extension to factor graphs and comments on related work adde

    Towards a four-loop form factor

    Full text link
    The four-loop, two-point form factor contains the first non-planar correction to the lightlike cusp anomalous dimension. This anomalous dimension is a universal function which appears in many applications. Its planar part in N = 4 SYM is known, in principle, exactly from AdS/CFT and integrability while its non-planar part has been conjectured to vanish. The integrand of the form factor of the stress-tensor multiplet in N = 4 SYM including the non-planar part was obtained in previous work. We parametrise the difficulty of integrating this integrand. We have obtained a basis of master integrals for all integrals in the four-loop, two-point class in two ways. First, we computed an IBP reduction of the integrand of the N = 4 form factor using massive computer algebra (Reduze). Second, we computed a list of master integrals based on methods of the Mint package, suitably extended using Macaulay2 / Singular. The master integrals obtained in both ways are consistent with some minor exceptions. The second method indicates that the master integrals apply beyond N = 4 SYM, in particular to QCD. The numerical integration of several of the master integrals will be reported and remaining obstacles will be outlinedComment: 9 Pages, Radcor/Loopfest 2015 Proceeding
    • …
    corecore