1,142 research outputs found

    Three Applications of Instanton Numbers

    Full text link
    We use instanton numbers to: (i) stratify moduli of vector bundles, (ii) calculate relative homology of moduli spaces and (iii) distinguish curve singularities.Comment: To appear in Communications in Mathematical Physic

    Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c=1 Matrix Models

    Get PDF
    We address the nonperturbative structure of topological strings and c=1 matrix models, focusing on understanding the nature of instanton effects alongside with exploring their relation to the large-order behavior of the 1/N expansion. We consider the Gaussian, Penner and Chern-Simons matrix models, together with their holographic duals, the c=1 minimal string at self-dual radius and topological string theory on the resolved conifold. We employ Borel analysis to obtain the exact all-loop multi-instanton corrections to the free energies of the aforementioned models, and show that the leading poles in the Borel plane control the large-order behavior of perturbation theory. We understand the nonperturbative effects in terms of the Schwinger effect and provide a semiclassical picture in terms of eigenvalue tunneling between critical points of the multi-sheeted matrix model effective potentials. In particular, we relate instantons to Stokes phenomena via a hyperasymptotic analysis, providing a smoothing of the nonperturbative ambiguity. Our predictions for the multi-instanton expansions are confirmed within the trans-series set-up, which in the double-scaling limit describes nonperturbative corrections to the Toda equation. Finally, we provide a spacetime realization of our nonperturbative corrections in terms of toric D-brane instantons which, in the double-scaling limit, precisely match D-instanton contributions to c=1 minimal strings.Comment: 71 pages, 14 figures, JHEP3.cls; v2: added refs, minor change

    The Sen Limit

    Full text link
    F-theory compactifications on elliptic Calabi-Yau manifolds may be related to IIb compactifications by taking a certain limit in complex structure moduli space, introduced by A. Sen. The limit has been characterized on the basis of SL(2,Z) monodromies of the elliptic fibration. Instead, we introduce a stable version of the Sen limit. In this picture the elliptic Calabi-Yau splits into two pieces, a P^1-bundle and a conic bundle, and the intersection yields the IIb space-time. We get a precise match between F-theory and perturbative type IIb. The correspondence is holographic, in the sense that physical quantities seemingly spread in the bulk of the F-theory Calabi-Yau may be rewritten as expressions on the log boundary. Smoothing the F-theory Calabi-Yau corresponds to summing up the D(-1)-instanton corrections to the IIb theory.Comment: 41 pp, 1 figure, LaTe
    • …
    corecore