979 research outputs found

    Computing hypergraph width measures exactly

    Full text link
    Hypergraph width measures are a class of hypergraph invariants important in studying the complexity of constraint satisfaction problems (CSPs). We present a general exact exponential algorithm for a large variety of these measures. A connection between these and tree decompositions is established. This enables us to almost seamlessly adapt the combinatorial and algorithmic results known for tree decompositions of graphs to the case of hypergraphs and obtain fast exact algorithms. As a consequence, we provide algorithms which, given a hypergraph H on n vertices and m hyperedges, compute the generalized hypertree-width of H in time O*(2^n) and compute the fractional hypertree-width of H in time O(m*1.734601^n).Comment: 12 pages, 1 figur

    Computing hypergraph width measures exactly

    Get PDF
    Hypergraph width measures are a class of hypergraph invariants important in studying the complexity of constraint satisfaction problems (CSPs). We present a general exact exponential algorithm for a large variety of these measures. A connection between these and tree decompositions is established. This enables us to almost seamlessly adapt the combinatorial and algorithmic results known for tree decompositions of graphs to the case of hypergraphs and obtain fast exact algorithms. As a consequence, we provide algorithms which, given a hypergraph H on n vertices and m hyperedges, compute the generalized hypertree-width of H in time O*(2n) and compute the fractional hypertree-width of H in time O(1.734601n.m).

    Hypergraph Acyclicity and Propositional Model Counting

    Full text link
    We show that the propositional model counting problem #SAT for CNF- formulas with hypergraphs that allow a disjoint branches decomposition can be solved in polynomial time. We show that this class of hypergraphs is incomparable to hypergraphs of bounded incidence cliquewidth which were the biggest class of hypergraphs for which #SAT was known to be solvable in polynomial time so far. Furthermore, we present a polynomial time algorithm that computes a disjoint branches decomposition of a given hypergraph if it exists and rejects otherwise. Finally, we show that some slight extensions of the class of hypergraphs with disjoint branches decompositions lead to intractable #SAT, leaving open how to generalize the counting result of this paper

    Approximating Hereditary Discrepancy via Small Width Ellipsoids

    Full text link
    The Discrepancy of a hypergraph is the minimum attainable value, over two-colorings of its vertices, of the maximum absolute imbalance of any hyperedge. The Hereditary Discrepancy of a hypergraph, defined as the maximum discrepancy of a restriction of the hypergraph to a subset of its vertices, is a measure of its complexity. Lovasz, Spencer and Vesztergombi (1986) related the natural extension of this quantity to matrices to rounding algorithms for linear programs, and gave a determinant based lower bound on the hereditary discrepancy. Matousek (2011) showed that this bound is tight up to a polylogarithmic factor, leaving open the question of actually computing this bound. Recent work by Nikolov, Talwar and Zhang (2013) showed a polynomial time O~(log3n)\tilde{O}(\log^3 n)-approximation to hereditary discrepancy, as a by-product of their work in differential privacy. In this paper, we give a direct simple O(log3/2n)O(\log^{3/2} n)-approximation algorithm for this problem. We show that up to this approximation factor, the hereditary discrepancy of a matrix AA is characterized by the optimal value of simple geometric convex program that seeks to minimize the largest \ell_{\infty} norm of any point in a ellipsoid containing the columns of AA. This characterization promises to be a useful tool in discrepancy theory

    Pure Nash Equilibria: Hard and Easy Games

    Full text link
    We investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NP-hard, while deciding whether a game has a strong Nash equilibrium is SigmaP2-complete. We then study practically relevant restrictions that lower the complexity. In particular, we are interested in quantitative and qualitative restrictions of the way each players payoff depends on moves of other players. We say that a game has small neighborhood if the utility function for each player depends only on (the actions of) a logarithmically small number of other players. The dependency structure of a game G can be expressed by a graph DG(G) or by a hypergraph H(G). By relating Nash equilibrium problems to constraint satisfaction problems (CSPs), we show that if G has small neighborhood and if H(G) has bounded hypertree width (or if DG(G) has bounded treewidth), then finding pure Nash and Pareto equilibria is feasible in polynomial time. If the game is graphical, then these problems are LOGCFL-complete and thus in the class NC2 of highly parallelizable problems

    Instance and Output Optimal Parallel Algorithms for Acyclic Joins

    Full text link
    Massively parallel join algorithms have received much attention in recent years, while most prior work has focused on worst-optimal algorithms. However, the worst-case optimality of these join algorithms relies on hard instances having very large output sizes, which rarely appear in practice. A stronger notion of optimality is {\em output-optimal}, which requires an algorithm to be optimal within the class of all instances sharing the same input and output size. An even stronger optimality is {\em instance-optimal}, i.e., the algorithm is optimal on every single instance, but this may not always be achievable. In the traditional RAM model of computation, the classical Yannakakis algorithm is instance-optimal on any acyclic join. But in the massively parallel computation (MPC) model, the situation becomes much more complicated. We first show that for the class of r-hierarchical joins, instance-optimality can still be achieved in the MPC model. Then, we give a new MPC algorithm for an arbitrary acyclic join with load O ({\IN \over p} + {\sqrt{\IN \cdot \OUT} \over p}), where \IN,\OUT are the input and output sizes of the join, and pp is the number of servers in the MPC model. This improves the MPC version of the Yannakakis algorithm by an O (\sqrt{\OUT \over \IN} ) factor. Furthermore, we show that this is output-optimal when \OUT = O(p \cdot \IN), for every acyclic but non-r-hierarchical join. Finally, we give the first output-sensitive lower bound for the triangle join in the MPC model, showing that it is inherently more difficult than acyclic joins

    Structural Decompositions for Problems with Global Constraints

    Full text link
    A wide range of problems can be modelled as constraint satisfaction problems (CSPs), that is, a set of constraints that must be satisfied simultaneously. Constraints can either be represented extensionally, by explicitly listing allowed combinations of values, or implicitly, by special-purpose algorithms provided by a solver. Such implicitly represented constraints, known as global constraints, are widely used; indeed, they are one of the key reasons for the success of constraint programming in solving real-world problems. In recent years, a variety of restrictions on the structure of CSP instances have been shown to yield tractable classes of CSPs. However, most such restrictions fail to guarantee tractability for CSPs with global constraints. We therefore study the applicability of structural restrictions to instances with such constraints. We show that when the number of solutions to a CSP instance is bounded in key parts of the problem, structural restrictions can be used to derive new tractable classes. Furthermore, we show that this result extends to combinations of instances drawn from known tractable classes, as well as to CSP instances where constraints assign costs to satisfying assignments.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s10601-015-9181-

    Gaussian width bounds with applications to arithmetic progressions in random settings

    Get PDF
    Motivated by problems on random differences in Szemer\'{e}di's theorem and on large deviations for arithmetic progressions in random sets, we prove upper bounds on the Gaussian width of point sets that are formed by the image of the nn-dimensional Boolean hypercube under a mapping ψ:RnRk\psi:\mathbb{R}^n\to\mathbb{R}^k, where each coordinate is a constant-degree multilinear polynomial with 0-1 coefficients. We show the following applications of our bounds. Let [Z/NZ]p[\mathbb{Z}/N\mathbb{Z}]_p be the random subset of Z/NZ\mathbb{Z}/N\mathbb{Z} containing each element independently with probability pp. \bullet A set DZ/NZD\subseteq \mathbb{Z}/N\mathbb{Z} is \ell-intersective if any dense subset of Z/NZ\mathbb{Z}/N\mathbb{Z} contains a proper (+1)(\ell+1)-term arithmetic progression with common difference in DD. Our main result implies that [Z/NZ]p[\mathbb{Z}/N\mathbb{Z}]_p is \ell-intersective with probability 1o(1)1 - o(1) provided pω(NβlogN)p \geq \omega(N^{-\beta_\ell}\log N) for β=((+1)/2)1\beta_\ell = (\lceil(\ell+1)/2\rceil)^{-1}. This gives a polynomial improvement for all 3\ell \ge 3 of a previous bound due to Frantzikinakis, Lesigne and Wierdl, and reproves more directly the same improvement shown recently by the authors and Dvir. \bullet Let XkX_k be the number of kk-term arithmetic progressions in [Z/NZ]p[\mathbb{Z}/N\mathbb{Z}]_p and consider the large deviation rate ρk(δ)=logPr[Xk(1+δ)EXk]\rho_k(\delta) = \log\Pr[X_k \geq (1+\delta)\mathbb{E}X_k]. We give quadratic improvements of the best-known range of pp for which a highly precise estimate of ρk(δ)\rho_k(\delta) due to Bhattacharya, Ganguly, Shao and Zhao is valid for all odd k5k \geq 5. We also discuss connections with error correcting codes (locally decodable codes) and the Banach-space notion of type for injective tensor products of p\ell_p-spaces.Comment: 18 pages, some typos fixe
    corecore