4,527 research outputs found

    Computing halting probabilities from other halting probabilities

    Get PDF
    The halting probability of a Turing machine is the probability that the machine will halt if it starts with a random stream written on its one-way input tape. When the machine is universal, this probability is referred to as Chaitin's omega number, and is the most well known example of a real which is random in the sense of Martin-L\"{o}f. Although omega numbers depend on the underlying universal Turing machine, they are robust in the sense that they all have the same Turing degree, namely the degree of the halting problem. In this paper we give precise bounds on the redundancy growth rate that is generally required for the computation of an omega number from another omega number. We show that for each ϵ>1, any pair of omega numbers compute each other with redundancy ϵlogn. On the other hand, this is not true for ϵ=1. In fact, we show that for each omega number there exists another omega number which is not computable from the first one with redundancy logn. This latter result improves an older result of Frank Stephan

    Computing stationary probability distributions and large deviation rates for constrained random walks. The undecidability results

    Full text link
    Our model is a constrained homogeneous random walk in a nonnegative orthant Z_+^d. The convergence to stationarity for such a random walk can often be checked by constructing a Lyapunov function. The same Lyapunov function can also be used for computing approximately the stationary distribution of this random walk, using methods developed by Meyn and Tweedie. In this paper we show that, for this type of random walks, computing the stationary probability exactly is an undecidable problem: no algorithm can exist to achieve this task. We then prove that computing large deviation rates for this model is also an undecidable problem. We extend these results to a certain type of queueing systems. The implication of these results is that no useful formulas for computing stationary probabilities and large deviations rates can exist in these systems

    Most Programs Stop Quickly or Never Halt

    Get PDF
    Since many real-world problems arising in the fields of compiler optimisation, automated software engineering, formal proof systems, and so forth are equivalent to the Halting Problem--the most notorious undecidable problem--there is a growing interest, not only academically, in understanding the problem better and in providing alternative solutions. Halting computations can be recognised by simply running them; the main difficulty is to detect non-halting programs. Our approach is to have the probability space extend over both space and time and to consider the probability that a random NN-bit program has halted by a random time. We postulate an a priori computable probability distribution on all possible runtimes and we prove that given an integer k>0, we can effectively compute a time bound T such that the probability that an N-bit program will eventually halt given that it has not halted by T is smaller than 2^{-k}. We also show that the set of halting programs (which is computably enumerable, but not computable) can be written as a disjoint union of a computable set and a set of effectively vanishing probability. Finally, we show that ``long'' runtimes are effectively rare. More formally, the set of times at which an N-bit program can stop after the time 2^{N+constant} has effectively zero density.Comment: Shortened abstract and changed format of references to match Adv. Appl. Math guideline

    Universality and programmability of quantum computers

    Get PDF
    Manin, Feynman, and Deutsch have viewed quantum computing as a kind of universal physical simulation procedure. Much of the writing about quantum logic circuits and quantum Turing machines has shown how these machines can simulate an arbitrary unitary transformation on a finite number of qubits. The problem of universality has been addressed most famously in a paper by Deutsch, and later by Bernstein and Vazirani as well as Kitaev and Solovay. The quantum logic circuit model, developed by Feynman and Deutsch, has been more prominent in the research literature than Deutsch's quantum Turing machines. Quantum Turing machines form a class closely related to deterministic and probabilistic Turing machines and one might hope to find a universal machine in this class. A universal machine is the basis of a notion of programmability. The extent to which universality has in fact been established by the pioneers in the field is examined and this key notion in theoretical computer science is scrutinised in quantum computing by distinguishing various connotations and concomitant results and problems.Comment: 17 pages, expands on arXiv:0705.3077v1 [quant-ph
    corecore