39,418 research outputs found

    Computing differential characteristic sets by change of ordering

    No full text
    submitted to the Journal of Symbolic ComputationWe describe an algorithm for converting a characteristic set of a prime differential ideal from one ranking into another. This algorithm was implemented in many different languages and has been applied within various software and projects. It permitted to solve formerly unsolved problems

    Canonical Characteristic Sets of Characterizable Differential Ideals

    Get PDF
    We study the concept of canonical characteristic set of a characterizable differential ideal. We propose an efficient algorithm that transforms any characteristic set into the canonical one. We prove the basic properties of canonical characteristic sets. In particular, we show that in the ordinary case for any ranking the order of each element of the canonical characteristic set of a characterizable differential ideal is bounded by the order of the ideal. Finally, we propose a factorization-free algorithm for computing the canonical characteristic set of a characterizable differential ideal represented as a radical ideal by a set of generators. The algorithm is not restricted to the ordinary case and is applicable for an arbitrary ranking.Comment: 26 page

    Obstructions to Genericity in Study of Parametric Problems in Control Theory

    Full text link
    We investigate systems of equations, involving parameters from the point of view of both control theory and computer algebra. The equations might involve linear operators such as partial (q-)differentiation, (q-)shift, (q-)difference as well as more complicated ones, which act trivially on the parameters. Such a system can be identified algebraically with a certain left module over a non-commutative algebra, where the operators commute with the parameters. We develop, implement and use in practice the algorithm for revealing all the expressions in parameters, for which e.g. homological properties of a system differ from the generic properties. We use Groebner bases and Groebner basics in rings of solvable type as main tools. In particular, we demonstrate an optimized algorithm for computing the left inverse of a matrix over a ring of solvable type. We illustrate the article with interesting examples. In particular, we provide a complete solution to the "two pendula, mounted on a cart" problem from the classical book of Polderman and Willems, including the case, where the friction at the joints is essential . To the best of our knowledge, the latter example has not been solved before in a complete way.Comment: 20 page

    Bounds for algorithms in differential algebra

    Get PDF
    We consider the Rosenfeld-Groebner algorithm for computing a regular decomposition of a radical differential ideal generated by a set of ordinary differential polynomials in n indeterminates. For a set of ordinary differential polynomials F, let M(F) be the sum of maximal orders of differential indeterminates occurring in F. We propose a modification of the Rosenfeld-Groebner algorithm, in which for every intermediate polynomial system F, the bound M(F) is less than or equal to (n-1)!M(G), where G is the initial set of generators of the radical ideal. In particular, the resulting regular systems satisfy the bound. Since regular ideals can be decomposed into characterizable components algebraically, the bound also holds for the orders of derivatives occurring in a characteristic decomposition of a radical differential ideal. We also give an algorithm for converting a characteristic decomposition of a radical differential ideal from one ranking into another. This algorithm performs all differentiations in the beginning and then uses a purely algebraic decomposition algorithm.Comment: 40 page

    Thomas decompositions of parametric nonlinear control systems

    Full text link
    This paper presents an algorithmic method to study structural properties of nonlinear control systems in dependence of parameters. The result consists of a description of parameter configurations which cause different control-theoretic behaviour of the system (in terms of observability, flatness, etc.). The constructive symbolic method is based on the differential Thomas decomposition into disjoint simple systems, in particular its elimination properties

    Involutive Division Technique: Some Generalizations and Optimizations

    Full text link
    In this paper, in addition to the earlier introduced involutive divisions, we consider a new class of divisions induced by admissible monomial orderings. We prove that these divisions are noetherian and constructive. Thereby each of them allows one to compute an involutive Groebner basis of a polynomial ideal by sequentially examining multiplicative reductions of nonmultiplicative prolongations. We study dependence of involutive algorithms on the completion ordering. Based on properties of particular involutive divisions two computational optimizations are suggested. One of them consists in a special choice of the completion ordering. Another optimization is related to recomputing multiplicative and nonmultiplicative variables in the course of the algorithm.Comment: 19 page
    • …
    corecore