4,440 research outputs found

    A Faster Method to Estimate Closeness Centrality Ranking

    Get PDF
    Closeness centrality is one way of measuring how central a node is in the given network. The closeness centrality measure assigns a centrality value to each node based on its accessibility to the whole network. In real life applications, we are mainly interested in ranking nodes based on their centrality values. The classical method to compute the rank of a node first computes the closeness centrality of all nodes and then compares them to get its rank. Its time complexity is O(nm+n)O(n \cdot m + n), where nn represents total number of nodes, and mm represents total number of edges in the network. In the present work, we propose a heuristic method to fast estimate the closeness rank of a node in O(αm)O(\alpha \cdot m) time complexity, where α=3\alpha = 3. We also propose an extended improved method using uniform sampling technique. This method better estimates the rank and it has the time complexity O(αm)O(\alpha \cdot m), where α10100\alpha \approx 10-100. This is an excellent improvement over the classical centrality ranking method. The efficiency of the proposed methods is verified on real world scale-free social networks using absolute and weighted error functions

    Average Distance Queries through Weighted Samples in Graphs and Metric Spaces: High Scalability with Tight Statistical Guarantees

    Get PDF
    The average distance from a node to all other nodes in a graph, or from a query point in a metric space to a set of points, is a fundamental quantity in data analysis. The inverse of the average distance, known as the (classic) closeness centrality of a node, is a popular importance measure in the study of social networks. We develop novel structural insights on the sparsifiability of the distance relation via weighted sampling. Based on that, we present highly practical algorithms with strong statistical guarantees for fundamental problems. We show that the average distance (and hence the centrality) for all nodes in a graph can be estimated using O(ϵ2)O(\epsilon^{-2}) single-source distance computations. For a set VV of nn points in a metric space, we show that after preprocessing which uses O(n)O(n) distance computations we can compute a weighted sample SVS\subset V of size O(ϵ2)O(\epsilon^{-2}) such that the average distance from any query point vv to VV can be estimated from the distances from vv to SS. Finally, we show that for a set of points VV in a metric space, we can estimate the average pairwise distance using O(n+ϵ2)O(n+\epsilon^{-2}) distance computations. The estimate is based on a weighted sample of O(ϵ2)O(\epsilon^{-2}) pairs of points, which is computed using O(n)O(n) distance computations. Our estimates are unbiased with normalized mean square error (NRMSE) of at most ϵ\epsilon. Increasing the sample size by a O(logn)O(\log n) factor ensures that the probability that the relative error exceeds ϵ\epsilon is polynomially small.Comment: 21 pages, will appear in the Proceedings of RANDOM 201

    Generalized Erdos Numbers for network analysis

    Get PDF
    In this paper we consider the concept of `closeness' between nodes in a weighted network that can be defined topologically even in the absence of a metric. The Generalized Erd\H{o}s Numbers (GENs) satisfy a number of desirable properties as a measure of topological closeness when nodes share a finite resource between nodes as they are real-valued and non-local, and can be used to create an asymmetric matrix of connectivities. We show that they can be used to define a personalized measure of the importance of nodes in a network with a natural interpretation that leads to a new global measure of centrality and is highly correlated with Page Rank. The relative asymmetry of the GENs (due to their non-metric definition) is linked also to the asymmetry in the mean first passage time between nodes in a random walk, and we use a linearized form of the GENs to develop a continuum model for `closeness' in spatial networks. As an example of their practicality, we deploy them to characterize the structure of static networks and show how it relates to dynamics on networks in such situations as the spread of an epidemic
    corecore