3,868 research outputs found

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    The octet rule in chemical space: Generating virtual molecules

    Full text link
    We present a generator of virtual molecules that selects valid chemistry on the basis of the octet rule. Also, we introduce a mesomer group key that allows a fast detection of duplicates in the generated structures. Compared to existing approaches, our model is simpler and faster, generates new chemistry and avoids invalid chemistry. Its versatility is illustrated by the correct generation of molecules containing third-row elements and a surprisingly adept handling of complex boron chemistry. Without any empirical parameters, our model is designed to be valid also in unexplored regions of chemical space. One first unexpected finding is the high prevalence of dipolar structures among generated molecules.Comment: 24 pages, 10 figure

    Molecular Realization of a Quantum NAND Tree

    Full text link
    The negative-AND (NAND) gate is universal for classical computation making it an important target for development. A seminal quantum computing algorithm by Farhi, Goldstone and Gutmann has demonstrated its realization by means of quantum scattering yielding a quantum algorithm that evaluates the output faster than any classical algorithm. Here, we derive the NAND outputs analytically from scattering theory using a tight-binding (TB) model and show the restrictions on the TB parameters in order to still maintain the NAND gate function. We map the quantum NAND tree onto a conjugated molecular system, and compare the NAND output with non-equilibrium Green's function (NEGF) transport calculations using density functional theory (DFT) and TB Hamiltonians for the electronic structure. Further, we extend our molecular platform to show other classical gates that can be realized for quantum computing by scattering on graphs.Comment: 17 pages, 6 figures, 1 tabl

    Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

    Full text link
    We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.Comment: 28 pages, 19 figure

    Efficient mining of discriminative molecular fragments

    Get PDF
    Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the well known National Cancer Institute’s HIV-screening dataset
    • …
    corecore