1,429 research outputs found

    The Art of Fault Injection

    Get PDF
    Classical greek philosopher considered the foremost virtues to be temperance, justice, courage, and prudence. In this paper we relate these cardinal virtues to the correct methodological approaches that researchers should follow when setting up a fault injection experiment. With this work we try to understand where the "straightforward pathway" lies, in order to highlight those common methodological errors that deeply influence the coherency and the meaningfulness of fault injection experiments. Fault injection is like an art, where the success of the experiments depends on a very delicate balance between modeling, creativity, statistics, and patience

    HDL-based Synthesis of Reversible Circuits : A Scalable Design Approach

    Get PDF
    Reversible computing is a promising research field due to its applications in several emerging technologies. Accordingly, several approaches for the design of reversible circuits have been introduced. Hardware Description Languages approach scales better than other methodologies, however, its main drawback is substantial amounts of additional circuit lines. This dissertation is an important step towards an elaborated scalable design flow of reversible circuits. In which, HDL-based design of reversible circuit is optimised, with line-awareness considered as the main objective. A line-aware programming style for a dedicated reversible hardware description language SyReC is proposed. Another contribution is a line-aware computation of HDL expressions. Reversible circuits' synthesis from a conventional hardware description language (VHDL) is examined. Finally, syntactical extensions to the dedicated hardware description language SyReC are suggested

    New developments in the theory of Groebner bases and applications to formal verification

    Get PDF
    We present foundational work on standard bases over rings and on Boolean Groebner bases in the framework of Boolean functions. The research was motivated by our collaboration with electrical engineers and computer scientists on problems arising from formal verification of digital circuits. In fact, algebraic modelling of formal verification problems is developed on the word-level as well as on the bit-level. The word-level model leads to Groebner basis in the polynomial ring over Z/2n while the bit-level model leads to Boolean Groebner bases. In addition to the theoretical foundations of both approaches, the algorithms have been implemented. Using these implementations we show that special data structures and the exploitation of symmetries make Groebner bases competitive to state-of-the-art tools from formal verification but having the advantage of being systematic and more flexible.Comment: 44 pages, 8 figures, submitted to the Special Issue of the Journal of Pure and Applied Algebr

    Implementation of Block-based Neural Networks on Reconfigurable Computing Platforms

    Get PDF
    Block-based Neural Networks (BbNNs) provide a flexible and modular architecture to support adaptive applications in dynamic environments. Reconfigurable computing (RC) platforms provide computational efficiency combined with flexibility. Hence, RC provides an ideal match to evolvable BbNN applications. BbNNs are very convenient to build once a library of neural network blocks is built. This library-based approach for the design of BbNNs is extremely useful to automate implementations of BbNNs and evaluate their performance on RC platforms. This is important because, for a given application there may be hundreds to thousands of candidate BbNN implementations possible and evaluating each of them for accuracy and performance, using software simulations will take a very long time, which would not be acceptable for adaptive environments. This thesis focuses on the development and characterization of a library of parameterized VHDL models of neural network blocks, which may be used to build any BbNN. The use of these models is demonstrated in the XOR pattern classification problem and mobile robot navigation problem. For a given application, one may be interested in fabricating an ASIC, once the weights and architecture of the BbNN is decided. Pointers to ASIC implementation of BbNNs with initial results are also included in this thesis

    RT-level fast fault simulator

    Get PDF
    In this paper a new fast fault simulation technique is presented for calculation of fault propagation through HLPs (High Level Primitives). ROTDDs (Reduced Ordered Ternary Decision Diagrams) are used to describe HLP modules. The technique is implemented in the HTDD RT-level fault simulator. The simulator is evaluated with some ITC99 benchmarks. A hypothesis is proved that a test set coverage of physical failures can be anticipated with high accuracy when RTL fault model takes into account optimization strategies that are used in CAE system applied

    Taylor Expansion Diagrams: A Canonical Representation for Verification of Data Flow Designs

    Full text link
    corecore