531 research outputs found

    On group theory for quantum gates and quantum coherence

    Full text link
    Finite group extensions offer a natural language to quantum computing. In a nutshell, one roughly describes the action of a quantum computer as consisting of two finite groups of gates: error gates from the general Pauli group P and stabilizing gates within an extension group C. In this paper one explores the nice adequacy between group theoretical concepts such as commutators, normal subgroups, group of automorphisms, short exact sequences, wreath products... and the coherent quantum computational primitives. The structure of the single qubit and two-qubit Clifford groups is analyzed in detail. As a byproduct, one discovers that M20, the smallest perfect group for which the commutator subgroup departs from the set of commutators, underlies quantum coherence of the two-qubit system. One recovers similar results by looking at the automorphisms of a complete set of mutually unbiased bases.Comment: 10 pages, to appear in J Phys A: Math and Theo (Fast Track Communication

    Leveraging Automorphisms of Quantum Codes for Fault-Tolerant Quantum Computation

    Full text link
    Fault-tolerant quantum computation is a technique that is necessary to build a scalable quantum computer from noisy physical building blocks. Key for the implementation of fault-tolerant computations is the ability to perform a universal set of quantum gates that act on the code space of an underlying quantum code. To implement such a universal gate set fault-tolerantly is an expensive task in terms of physical operations, and any possible shortcut to save operations is potentially beneficial and might lead to a reduction in overhead for fault-tolerant computations. We show how the automorphism group of a quantum code can be used to implement some operators on the encoded quantum states in a fault-tolerant way by merely permuting the physical qubits. We derive conditions that a code has to satisfy in order to have a large group of operations that can be implemented transversally when combining transversal CNOT with automorphisms. We give several examples for quantum codes with large groups, including codes with parameters [[8,3,3]], [[15,7,3]], [[22,8,4]], and [[31,11,5]]

    Quantum Error Correction via Codes over GF(4)

    Get PDF
    The problem of finding quantum error-correcting codes is transformed into the problem of finding additive codes over the field GF(4) which are self-orthogonal with respect to a certain trace inner product. Many new codes and new bounds are presented, as well as a table of upper and lower bounds on such codes of length up to 30 qubits.Comment: Latex, 46 pages. To appear in IEEE Transactions on Information Theory. Replaced Sept. 24, 1996, to correct a number of minor errors. Replaced Sept. 10, 1997. The second section has been completely rewritten, and should hopefully be much clearer. We have also added a new section discussing the developments of the past year. Finally, we again corrected a number of minor error

    Performance of binary block codes at low signal-to-noise ratios

    Get PDF
    The performance of general binary block codes on an unquantized additive white Gaussian noise (AWGN) channel at low signal-to-noise ratios is considered. Expressions are derived for both the block error and the bit error probabilities near the point where the bit signal-to-noise ratio is zero. These expressions depend on the global geometric structure of the code, although the minimum distance still seems to play a crucial role. Examples of codes such as orthogonal codes, biorthogonal codes, the (24,12) extended Golay code, and the (15,6) expurgated BCH code are discussed. The asymptotic coding gain at low signal-to-noise ratios is also studied

    Isometry and Automorphisms of Constant Dimension Codes

    Full text link
    We define linear and semilinear isometry for general subspace codes, used for random network coding. Furthermore, some results on isometry classes and automorphism groups of known constant dimension code constructions are derived

    Group homomorphisms as error correcting codes

    Get PDF
    We investigate the minimum distance of the error correcting code formed by the homomorphisms between two finite groups GG and HH. We prove some general structural results on how the distance behaves with respect to natural group operations, such as passing to subgroups and quotients, and taking products. Our main result is a general formula for the distance when GG is solvable or HH is nilpotent, in terms of the normal subgroup structure of GG as well as the prime divisors of G|G| and H|H|. In particular, we show that in the above case, the distance is independent of the subgroup structure of HH. We complement this by showing that, in general, the distance depends on the subgroup structure GG.Comment: 13 page
    corecore