730 research outputs found

    Gaussian Optical Ising Machines

    Get PDF
    It has recently been shown that optical parametric oscillator (OPO) Ising machines, consisting of coupled optical pulses circulating in a cavity with parametric gain, can be used to probabilistically find low-energy states of Ising spin systems. In this work, we study optical Ising machines that operate under simplified Gaussian dynamics. We show that these dynamics are sufficient for reaching probabilities of success comparable to previous work. Based on this result, we propose modified optical Ising machines with simpler designs that do not use parametric gain yet achieve similar performance, thus suggesting a route to building much larger systems.Comment: 6 page

    Mapping constrained optimization problems to quantum annealing with application to fault diagnosis

    Get PDF
    Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.Comment: 22 pages, 4 figure

    Gaussian optical Ising machines

    No full text
    It has recently been shown that optical parametric oscillator (OPO) Ising machines, consisting of coupled optical pulses circulating in a cavity with parametric gain, can be used to probabilistically find low-energy states of Ising spin systems. In this work, we study optical Ising machines that operate under simplified Gaussian dynamics. We show that these dynamics are sufficient for reaching probabilities of success comparable to previous work. Based on this result, we propose modified optical Ising machines with simpler designs that do not use parametric gain yet achieve similar performance, thus suggesting a route to building much larger systems

    Supporting Energy-Based Learning With An Ising Machine Substrate: A Case Study on RBM

    Full text link
    Nature apparently does a lot of computation constantly. If we can harness some of that computation at an appropriate level, we can potentially perform certain type of computation (much) faster and more efficiently than we can do with a von Neumann computer. Indeed, many powerful algorithms are inspired by nature and are thus prime candidates for nature-based computation. One particular branch of this effort that has seen some recent rapid advances is Ising machines. Some Ising machines are already showing better performance and energy efficiency for optimization problems. Through design iterations and co-evolution between hardware and algorithm, we expect more benefits from nature-based computing systems. In this paper, we make a case for an augmented Ising machine suitable for both training and inference using an energy-based machine learning algorithm. We show that with a small change, the Ising substrate accelerate key parts of the algorithm and achieve non-trivial speedup and efficiency gain. With a more substantial change, we can turn the machine into a self-sufficient gradient follower to virtually complete training entirely in hardware. This can bring about 29x speedup and about 1000x reduction in energy compared to a Tensor Processing Unit (TPU) host

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    On the Challenges of Physical Implementations of RBMs

    Full text link
    Restricted Boltzmann machines (RBMs) are powerful machine learning models, but learning and some kinds of inference in the model require sampling-based approximations, which, in classical digital computers, are implemented using expensive MCMC. Physical computation offers the opportunity to reduce the cost of sampling by building physical systems whose natural dynamics correspond to drawing samples from the desired RBM distribution. Such a system avoids the burn-in and mixing cost of a Markov chain. However, hardware implementations of this variety usually entail limitations such as low-precision and limited range of the parameters and restrictions on the size and topology of the RBM. We conduct software simulations to determine how harmful each of these restrictions is. Our simulations are designed to reproduce aspects of the D-Wave quantum computer, but the issues we investigate arise in most forms of physical computation
    corecore