714 research outputs found

    Evolutionary Poisson Games for Controlling Large Population Behaviors

    Full text link
    Emerging applications in engineering such as crowd-sourcing and (mis)information propagation involve a large population of heterogeneous users or agents in a complex network who strategically make dynamic decisions. In this work, we establish an evolutionary Poisson game framework to capture the random, dynamic and heterogeneous interactions of agents in a holistic fashion, and design mechanisms to control their behaviors to achieve a system-wide objective. We use the antivirus protection challenge in cyber security to motivate the framework, where each user in the network can choose whether or not to adopt the software. We introduce the notion of evolutionary Poisson stable equilibrium for the game, and show its existence and uniqueness. Online algorithms are developed using the techniques of stochastic approximation coupled with the population dynamics, and they are shown to converge to the optimal solution of the controller problem. Numerical examples are used to illustrate and corroborate our results

    Data-Driven Estimation in Equilibrium Using Inverse Optimization

    Get PDF
    Equilibrium modeling is common in a variety of fields such as game theory and transportation science. The inputs for these models, however, are often difficult to estimate, while their outputs, i.e., the equilibria they are meant to describe, are often directly observable. By combining ideas from inverse optimization with the theory of variational inequalities, we develop an efficient, data-driven technique for estimating the parameters of these models from observed equilibria. We use this technique to estimate the utility functions of players in a game from their observed actions and to estimate the congestion function on a road network from traffic count data. A distinguishing feature of our approach is that it supports both parametric and \emph{nonparametric} estimation by leveraging ideas from statistical learning (kernel methods and regularization operators). In computational experiments involving Nash and Wardrop equilibria in a nonparametric setting, we find that a) we effectively estimate the unknown demand or congestion function, respectively, and b) our proposed regularization technique substantially improves the out-of-sample performance of our estimators.Comment: 36 pages, 5 figures Additional theorems for generalization guarantees and statistical analysis adde

    User Satisfaction in Competitive Sponsored Search

    Full text link
    We present a model of competition between web search algorithms, and study the impact of such competition on user welfare. In our model, search providers compete for customers by strategically selecting which search results to display in response to user queries. Customers, in turn, have private preferences over search results and will tend to use search engines that are more likely to display pages satisfying their demands. Our main question is whether competition between search engines increases the overall welfare of the users (i.e., the likelihood that a user finds a page of interest). When search engines derive utility only from customers to whom they show relevant results, we show that they differentiate their results, and every equilibrium of the resulting game achieves at least half of the welfare that could be obtained by a social planner. This bound also applies whenever the likelihood of selecting a given engine is a convex function of the probability that a user's demand will be satisfied, which includes natural Markovian models of user behavior. On the other hand, when search engines derive utility from all customers (independent of search result relevance) and the customer demand functions are not convex, there are instances in which the (unique) equilibrium involves no differentiation between engines and a high degree of randomness in search results. This can degrade social welfare by a factor of the square root of N relative to the social optimum, where N is the number of webpages. These bad equilibria persist even when search engines can extract only small (but non-zero) expected revenue from dissatisfied users, and much higher revenue from satisfied ones
    • …
    corecore