19,870 research outputs found

    Computing algebraic numbers of bounded height

    Full text link
    We describe an algorithm for listing all elements of bounded height in a given number field

    On the Explicit Torsion Anomalous Conjecture

    Get PDF
    The Torsion Anomalous Conjecture states that an irreducible variety VV embedded in a semi-abelian variety contains only finitely many maximal VV-torsion anomalous varieties. In this paper we consider an irreducible variety embedded in a product of elliptic curves. Our main result provides a totally explicit bound for the N\'eron-Tate height of all maximal VV-torsion anomalous points of relative codimension one, in the non CM case, and an analogous effective result in the CM case. As an application, we obtain the finiteness of such points. In addition, we deduce some new explicit results in the context of the effective Mordell-Lang Conjecture; in particular we bound the N\'eron-Tate height of the rational points of an explicit family of curves of increasing genus.Comment: Accepted for publication on Transactions of the American Mathematical Societ

    Factoring bivariate sparse (lacunary) polynomials

    Get PDF
    We present a deterministic algorithm for computing all irreducible factors of degree d\le d of a given bivariate polynomial fK[x,y]f\in K[x,y] over an algebraic number field KK and their multiplicities, whose running time is polynomial in the bit length of the sparse encoding of the input and in dd. Moreover, we show that the factors over \Qbarra of degree d\le d which are not binomials can also be computed in time polynomial in the sparse length of the input and in dd.Comment: 20 pp, Latex 2e. We learned on January 23th, 2006, that a multivariate version of Theorem 1 had independently been achieved by Erich Kaltofen and Pascal Koira

    The complexity of class polynomial computation via floating point approximations

    Get PDF
    We analyse the complexity of computing class polynomials, that are an important ingredient for CM constructions of elliptic curves, via complex floating point approximations of their roots. The heart of the algorithm is the evaluation of modular functions in several arguments. The fastest one of the presented approaches uses a technique devised by Dupont to evaluate modular functions by Newton iterations on an expression involving the arithmetic-geometric mean. It runs in time O(Dlog5DloglogD)=O(D1+ϵ)=O(h2+ϵ)O (|D| \log^5 |D| \log \log |D|) = O (|D|^{1 + \epsilon}) = O (h^{2 + \epsilon}) for any ϵ>0\epsilon > 0, where DD is the CM discriminant and hh is the degree of the class polynomial. Another fast algorithm uses multipoint evaluation techniques known from symbolic computation; its asymptotic complexity is worse by a factor of logD\log |D|. Up to logarithmic factors, this running time matches the size of the constructed polynomials. The estimate also relies on a new result concerning the complexity of enumerating the class group of an imaginary-quadratic order and on a rigorously proven upper bound for the height of class polynomials

    Near-Optimal Complexity Bounds for Fragments of the Skolem Problem

    Get PDF
    Given a linear recurrence sequence (LRS), specified using the initial conditions and the recurrence relation, the Skolem problem asks if zero ever occurs in the infinite sequence generated by the LRS. Despite active research over last few decades, its decidability is known only for a few restricted subclasses, by either restricting the order of the LRS (upto 4) or by restricting the structure of the LRS (e.g., roots of its characteristic polynomial). In this paper, we identify a subclass of LRS of arbitrary order for which the Skolem problem is easy, namely LRS all of whose characteristic roots are (possibly complex) roots of real algebraic numbers, i.e., roots satisfying x^d = r for r real algebraic. We show that for this subclass, the Skolem problem can be solved in NP^RP. As a byproduct, we implicitly obtain effective bounds on the zero set of the LRS for this subclass. While prior works in this area often exploit deep results from algebraic and transcendental number theory to get such effective results, our techniques are primarily algorithmic and use linear algebra and Galois theory. We also complement our upper bounds with a NP lower bound for the Skolem problem via a new direct reduction from 3-CNF-SAT, matching the best known lower bounds

    Positivity Problems for Low-Order Linear Recurrence Sequences

    Full text link
    We consider two decision problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem} (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, with complexity in the Counting Hierarchy for Positivity, and in polynomial time for Ultimate Positivity. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers
    corecore