5,969 research outputs found

    Fleet Prognosis with Physics-informed Recurrent Neural Networks

    Full text link
    Services and warranties of large fleets of engineering assets is a very profitable business. The success of companies in that area is often related to predictive maintenance driven by advanced analytics. Therefore, accurate modeling, as a way to understand how the complex interactions between operating conditions and component capability define useful life, is key for services profitability. Unfortunately, building prognosis models for large fleets is a daunting task as factors such as duty cycle variation, harsh environments, inadequate maintenance, and problems with mass production can lead to large discrepancies between designed and observed useful lives. This paper introduces a novel physics-informed neural network approach to prognosis by extending recurrent neural networks to cumulative damage models. We propose a new recurrent neural network cell designed to merge physics-informed and data-driven layers. With that, engineers and scientists have the chance to use physics-informed layers to model parts that are well understood (e.g., fatigue crack growth) and use data-driven layers to model parts that are poorly characterized (e.g., internal loads). A simple numerical experiment is used to present the main features of the proposed physics-informed recurrent neural network for damage accumulation. The test problem consist of predicting fatigue crack length for a synthetic fleet of airplanes subject to different mission mixes. The model is trained using full observation inputs (far-field loads) and very limited observation of outputs (crack length at inspection for only a portion of the fleet). The results demonstrate that our proposed hybrid physics-informed recurrent neural network is able to accurately model fatigue crack growth even when the observed distribution of crack length does not match with the (unobservable) fleet distribution.Comment: Data and codes (including our implementation for both the multi-layer perceptron, the stress intensity and Paris law layers, the cumulative damage cell, as well as python driver scripts) used in this manuscript are publicly available on GitHub at https://github.com/PML-UCF/pinn. The data and code are released under the MIT Licens

    A development of logistics management models for the Space Transportation System

    Get PDF
    A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support

    An assessment of the risk arising from electrical effects associated with carbon fibers released from commercial aircraft fires

    Get PDF
    The risks associated with electrical effects arising from carbon fibers released from commercial aviation aircraft fires were estimated for 1993. The expected annual losses were estimated to be about 470(1977dollars)in1993.Thechancesoftotallossesfromelectricaleffectsexceeding470 (1977 dollars) in 1993. The chances of total losses from electrical effects exceeding 100,000 (1977 dollars) in 1993 were established to be about one in ten thousand

    Subsonic Ultra Green Aircraft Research

    Get PDF
    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified

    A System Level Study of New Wake Turbulence Separation Concepts and Their Impact on Airport Capacity

    Get PDF
    The air transportation industry continues to grow worldwide, but demand is often limited by available airspace and airport capacity. This thesis focuses on evaluating new air traffic procedures: specifically, new and emerging wake turbulence separation rules that could potentially increase runway capacity based on today’s knowledge of wake vortex turbulence and technological capabilities. While legacy wake separation rules establish aircraft-classes based on weight of aircraft, these new separation rules can define separation standards by considering other aircraft parameters and dynamic wind conditions. A fast-time runway system model is developed for studying these wake separation rules, using Monte-Carlo simulations, to provide accurate and realistic runway capacity estimates based on the randomness of arrival and departure operations. A total of nine new proposed wake separation rules are analyzed in detail, which include both distance-based and time-based methods, as well as static and dynamic concepts. Seven of the busiest and most delayed U.S. airports are selected as case studies for the illustration of runway capacity benefits enabled by these new wake separation rules: Boston (BOS), New York J.F. Kennedy (JFK), New York LaGuardia (LGA), Newark (EWR), San Francisco (SFO), Los Angeles (LAX), and Chicago O’Hare (ORD). For a detailed capacity analysis, the new wake separation rules are tested under the most constraining runway configurations at each of these airports. The results indicate that increasing the number of aircraft wake categories can increase runway capacity, but the added benefits become smaller with each new category added. A five-or six-category wake separation system can capture most of the runway capacity that can be achieved with a static pair-wise system. Additionally, shifting wake category boundaries between airports as a function of local fleet mix can provide additional runway capacity benefits, meaning that airport specific wake separation rules can increase capacity over a universal separation rule system. Among the new wake separation rules, the results indicate that reducing wake separations further from current minimum separations (separation values of 2NM or less) can shift the operational bottleneck from the approach path to the runway, as runway occupancy time becomes the limiting factor for inter-arrival separations. The findings from the time-based separation rule demonstrate that switching from distance-based separations to time-based separations in strong headwind conditions can recover significant lost capacity. Time-based separation rules can be of great value 4 to increase operational reliability and capacity predictability at airports in all weather conditions. Moreover, the results also indicate that a reduction in minimum separations enabled by dynamic wind and aircraft information can offer marginal runway capacity benefits over the capacity enabled by static pair-wise wake separations, as more and more aircraft pairs become limited by runway occupancy time. Therefore, a joint effort is needed for reducing both wake separations and runway occupancy in order to accommodate future air traffic demand.This project was funded under the FAA NEXTOR II Center of Excellence

    Application of Strategic Planning Process with Fleet Level Analysis Methods

    Get PDF
    The goal of this work is to quantify and characterize the potential system-wide reduction of fuel consumption and corresponding CO2 emissions, resulting from the introduction of N+2 aircraft technologies and concepts into the fleet. Although NASA goals for this timeframe are referenced against a large twin aisle aircraft we consider their application across all vehicle classes of the commercial aircraft fleet, from regional jets to very large aircraft. In this work the authors describe and discuss the formulation and implementation of the fleet assessment by addressing the main analytical components: forecasting, operations allocation, fleet retirement, fleet replacement, and environmental performance modeling

    Study of quiet turbofan STOL aircraft for short haul transportation

    Get PDF
    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion

    Commercial Helicopter Services: Toward Quantitative Solutions for Understanding Industry Phenomena and Achieving Stakeholder Optimization

    Get PDF
    An understanding of industry phenomena and optimization techniques within the upstream energy industry’s transportation sector is markedly absent in the extant literature and suitable for rigorous investigation. This manuscript presents analyses related to the optimization of offshore worker transportation and econometric analyses of factors influencing commercial helicopter operators’ stock returns, which are represented throughout the manuscript as Part I and Part II, respectively. The global energy industry transports supplies and personnel via helicopter to offshore locations and has been increasingly focusing on optimizing upstream logistics. Using a unique sample of deepwater and ultra-deepwater permanent offshore locations in the Gulf of Mexico, transportation networks consisting of 58 locations operated by 19 firms are optimized via a randomized greedy algorithm. The model developed in Part I has been found to effectively solve the complex transportation problem and simulation results show the potential advantages of alternative clustered and integrated network structures, as compared to an independent firm-level structure. The evaluation of clustered and integrated network structures, which allow ride sharing via energy firm cooperation, provides evidence that such network structures may yield cost reductions for participating firms. The extent to which commercial helicopter operators’ stock returns are related to commodity prices and other relevant industry variables is absent in the extant literature. Often, firms attribute favorable results to internal factors whereas unfavorable results are attributed to external factors. Using a unique data set from 2013-2018, the current research identifies structural relationships between crude oil prices, natural gas prices, the rotary rig count, a subset of the overall market, firms’ degree of diversification and stock returns of commercial helicopter operators. Empirical analyses developed in Part II show that the prevalent price of crude oil and the overall market environment possess explanatory power of commercial helicopter firms’ stock returns, ceteris paribus. Specifically, 10% increases in the crude oil price and the S&P 500 index yield a 2.7% and 8.0% increase in stock returns, respectively. Collectively, the abovementioned parts of this manuscript provide rigorous, quantitative analyses of topics unrepresented within the extant literature, which are foundational for future practice and research. Specifically, new knowledge regarding a practical approach to model development and solution deliverance for the transportation of offshore workers to their respective locations and factors influencing commercial helicopter operators’ stock returns has been appropriately designed and empirically evaluated

    Dynamic Vehicle Scheduling for Working Service Network with Dual Demands

    Get PDF

    The Parametric Aircraft Noise Analysis Module - status overview and recent applications

    Get PDF
    The German Aerospace Center (DLR) is investigating aircraft noise prediction and noise reduction capabilities. The Parametric Aircraft Noise Analysis Module (PANAM) is a fast prediction tool by the DLR Institute of Aerodynamics and Flow Technology to address overall aircraft noise. It was initially developed to (1) enable comparative design studies with respect to overall aircraft ground noise and to (2) indentify promising low-noise technologies at early aircraft design stages. A brief survey of available and established fast noise prediction codes is provided in order to rank and classify PANAM among existing tools. PANAM predicts aircraft noise generated during arbitrary 3D approach and take-off flight procedures. Noise generation of an operating aircraft is determined by its design, the relative observer position, configuration settings, and operating condition along the flight path. Feasible noise analysis requires a detailed simulation of all these dominating effects. Major aircraft noise components are simulated with individual models and interactions are neglected. Each component is simulated with a separate semi-empirical and parametric noise source model. These models capture major physical effects and correlations yet allow for fast and accurate noise prediction. Sound propagation and convection effects are applied to the emitting noise source in order to transfer static emission into aircraft ground noise impact with respect to the actual flight operating conditions. Recent developments and process interfaces are presented and prediction results are compared with experimental data recorded during DLR flyover noise campaigns with an Airbus A319 (2006), a VFW-614 (2009), and a Boeing B737-700 (2010). Overall, dominating airframe and engine noise sources are adequately modeled and overall aircraft ground noise levels can sufficiently be predicted. The paper concludes with a brief overview on current code applications towards selected noise reduction technologies
    • …
    corecore